+7 (927) 633-53-99

73region@redcross.ru

Гагарина д.1

г. Ульяновск

Пн-Чт 08:00-17:30

Пт 08:00-15:00

Лекция 1. Основы физиологии и гигиены человека.

Физиология – наука о жизнедеятельности целостного организма, физиологических систем, органов, клеток и субклеточных структур. Физиология изучает механизмы регуляции и закономерности жизнедеятельности организма и взаимодействия его с окружающей средой, направленные на достижение полезного результата и обладающие приспособительными свойствами. Она использует сведения, полученные такими науками, как анатомия, гистология, биология, биохимия, экология, биофизика и многими другими. Гиппократ заложил основы для понимания роли отдельных систем и функций организма как целого. Декарт сформулировал рефлекторный принцип организации движений. Вильям Гарвей открыл кровообращение, а М. Мальпиги показал, что оно осуществляется по замкнутой сети сосудов. Ф. Мажанди доказал существование чувствительных и двигательных нервов. Клод Бернар обнаружил нервную регуляцию тонуса кровеносных сосудов и обмена углеводов, а также сформулировал представление о внутренней среде организма. Основные принципы деятельности мозга сформулировал Ч.С. Шеррингтон, капиллярное кровообращение исследовал А. Крог.

Велик вклад отечественных ученых в физиологию дыхательного (Н.А. Миславский, Д.С. Холдейн, М.В. Сергиевский) и сосудодвигательного (Ф.В. Овсянников) центров. Ученик Н.И. Пирогова, А.П. Вальтер установил нервную регуляцию «внутренних» процессов в организме. И.М. Сеченов доказал перенос углекислоты гемоглобином, научно обосновал значение активного отдыха, открыл центральное торможение и сформулировал положение о том, что внешние проявления мозговой деятельности сводятся в конечном итоге к мышечному движению. И.П.Павлов изучал высшую нервную деятельность, физиологию кровообращения и пищеварения. A.M. Уголев открыл мембранное пищеварение и разработал концепцию эндокринной деятельности желудочно-кишечного тракта. В двадцатом веке сделаны открытия в области эндокринологии, иммунологии и цитофизиологии, разработана мембранная теория биоэлектрических потенциалов, сформированы представления о гомеостазе и взаимосвязи организма с окружающей внешней средой. На основе всего этого развиваются адаптология, биоритмология, а также экология человека. В новых природных и производственных условиях человек испытывает влияние жестких факторов среды, неадекватных его природе. Поэтому стала приоритетной разработка физиологически обоснованных средств охраны труда и экологической безопасности.

Физиология возбудимых тканей

В основе приспособительных реакций организма лежит раздражимость – способность реагировать на воздействия изменением структуры и функций. Раздражимостью обладают все клетки животных и растений. В ходе эволюции раздражимость некоторых тканей достигла наивысшего развития и трансформировалась в возбудимость (способность отвечать на раздражение возбуждением). К возбудимым относят нервную, мышечную и секреторную ткани. Возбудимость оценивают по порогу раздражения (минимальной силе раздражителя, которая способна вызвать возбуждение). Раздражители по их природе делят на физические, химические, биологические (вирусы, бактерии и др.), адекватные и неадекватные. Адекватными называют раздражители, к восприятию которых биологическая структура специально приспособлена. Поэтому пороговая сила адекватных раздражителей наименьшая. Например, адекватным для фоторецепторов является свет, для мышц – нервный импульс. Неадекватными называют раздражители, которые действуют на структуру, не приспособленную для их восприятия. Например, скелетная мышца реагирует сокращением и на электрические раздражения.

Биоэлектрические явления в возбудимых тканях. Возбуждение – это совокупность процессов, в результате которых кратковременная деполяризация цитоплазматической мембраны вызывает специализированную реакцию клетки (проведение нервного импульса, сокращение мышцы и т.д.).

Луиджи Гальвани обратил внимание на сокращение мышц препарата задних лапок, подвешенного на медном крючке, при соприкосновении с железными перилами балкона. На основании этого (первый опыт Гальвани) был сделан вывод, что сокращение вызвано «электричеством», которое передается по крючку и перилам от спинного мозга к мышцам. Однако физик А. Вольта предположил, что источником тока является не мозг, а потенциал в месте контакта разнородных металлов. В ответ на это Л. Гальвани стеклянным крючком набрасывал седалищный нерв на мышцы голени, что вызывало сокращение мышц (второй опыт или опыт без металлов) и доказывало существование «животного электричества». Позднее установлено, что клетки в покое внутри заряжены отрицательно по отношению к их поверхности. Этот потенциал покоя (ПП) составляет от 30 до 100 мВ.

В середине 20 века. А.Ходжкин, Э.Хаксли и Б.Катц создали мембранно-ионную теорию, согласно которой МП обусловлен разными концентрациями ионов калия, натрия и хлора по обе стороны клеточной мембраны. По сравнению с внеклеточной жидкостью, цитоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора. Высокая проницаемость мембраны для калия приводит к выходу части внутриклеточного калия в окружающую клетку среду и к появлению положительного заряда на наружной поверхности мембраны. Органические анионы, для которых мембрана непроницаема, создают на внутренней поверхности мембраны отрицательный заряд, а поддерживает высокие концентрации калия в клетке и натрия вне ее натрий-калиевый насос.

Раздражение возбудимой клетки может вызвать локальный ответ или потенциал действия. Локальный ответ возникает при подпороговых раздражениях. Он находится в прямой зависимости от силы стимула, локализуется на поверхности клетки только в месте ее раздражения и увеличивает возбудимость клетки. Потенциал действия (ПД) возникает под влиянием порогового или сверхпорогового раздражений. При этом проницаемость мембраны для натрия увеличивается и в результате проникновения натрия в клетку ее мембрана заряжается положительно по отношению к наружной среде. Затем закрываются натриевые и открываются дополнительные калиевые каналы. В результате выхода калия из клетки начинается восстанавление МП (реполяризация мембраны).

В ПД различают (рис. 1.):

  1. Предспайк (локальный ответ) – деполяризация мембраны до критического уровня.
  2. Спайк – состоит из восходящей (деполяризация) и нисходящей (реполяризация) частей.
  3. Следовой потенциал – состоит из следовой деполяризации и гиперполяризации.

Рис. 1. Соотношение одиночного цикла возбуждения (А) и фаз возбудимости (Б). А: а – потенциал покоя; б – предспайк (локальный ответ); в и г – спайк; д – следовая деполяризация; е – следовая гиперполяризация. Б: а – исходный уровень возбудимости; б – фаза повышенной возбудимости; в – фаза абсолютной рефрактерности; г – фаза относительной рефрактерности; д – фаза экзальтации; е – фаза субнормальной возбудимости.

Возбудимость в период предспайка повышена (фаза повышенной возбудимости) и даже слабый дополнительный стимул может вызвать формирование ПД. В период спайка мембрана не возбудима (абсолютная рефрактерность). Затем возбудимость постепенно восстанавливается (относительная рефрактерность). В это время для нового возбуждения нужно сверхпороговое раздражение. При следовой деполяризации возбудимость повышена (экзальтация), а при гиперполяризации – понижена (субнормальная возбудимость).

Законы раздражения отражают зависимость ответной реакции возбудимой ткани от силы раздражителя.

Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), а пороговые раздражители вызывают максимальный ответ («все»). По этому закону сокращается одиночное мышечное волокно и серце.

Закон силы: чем сильнее раздражение, тем больше ответная реакция. В соответствии с этим законом функционирует скелетная мышца. Она состоит из мышечных волокон с разной возбудимостью. На пороговые раздражители отвечают наиболее возбудимые волокна. Увеличение силы раздражителя дополнительно вовлекает в ответ волокна с меньшей возбудимостью и амплитуда сокращения мышцы растет.

Закон раздражения Дюбуа-Реймона: действие постоянного тока зависит от его силы и скорости нарастания. При медленном нарастании ткань приспосабливается к раздражителю (аккомодация) и возбуждение может не возникать.

Закон силы-времени отражает зависимость пороговой величины постоянного тока от времени его действия. Чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого ток, равный реобазе, вызывает возбуждение, называется полезным временем. Хронаксия – минимальное время, в течение которого ток, равный двум реобазам, вызывает реакцию.

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании – под анодом.

Закон физиологического электротона: в области катода возбудимостьповышается (катэлектротон), а у анода – снижается (анэлектротон). При длительном действии постоянного тока возбудимость под катодом снижается (катодическая депрессия), а под анодом – растет (анодная экзальтация).

Нервное волокно обладает: возбудимостью, проводимостью и лабильностью. Возбуждения распространяется по нервному волокну только при его анатомической и физиологической целостности, не переходит на соседнее нервное волокно (закон изолированного проведения), не изменяется по амплитуде (закон незатухающего или бездекрементного проведения) и проводится в обе стороны от места раздражения (закон двустороннего проведения).

Возбужденный участок поверхности нервного волокна приобретает отрицательный заряд. Так как соседний невозбужденный участок заряжен положительно, то между ними потечет электрический ток. Это вызовет возбуждение покоящегося участка и тоже изменит его заряд. В конечном итоге возбуждение распространится по всей поверхности не покрытого миелиновой оболочкой (безмякотного) нервного волокна (рис. 2а.). В миелиновых (мякотных) отростках нейронов, возбуждение может возникать только в перехватах Ранвье. Поэтому оно распространяется скачками от одного перехвата к другому (рис. 2б.) и движется гораздо быстрее, чем в безмякотных волокнах.

Рис. 2. Схема распространения возбуждения в безмиелиновых (а) и миелиновых (б) нервных волокнах.

По диаметру и скорости проведения возбуждения нервные волокна делят на типы А, В и С. Самые толстые волокна типа А (диаметр 12-22 мкм) с наибольшей скоростью (70-120 м/с) проводят возбуждение от мозга к скелетным мышцам и от рецепторов мышц к мозгу. От многих других рецепторов идут волокна типа А с несколько меньшими диаметром (от 8 до 1 мкм) и скоростью проведения возбуждения (5-70 м/с). К волокнам типа В относятся преганглионарные вегетативные волокна (диаметр – 1-3,5 мкм, скорость проведения возбуждения – 3-18 м/с). Только волокна типа С являются безмякотными (их диаметр 0,5-2 мкм, скорость проведения возбуждения менее 3 м/с). Они являются постганглионарными симпатическими волокнами, а также идут от болевых рецепторов, части терморецепторов и рецепторов давления.

Нервные волокна обладают лабильностью (функциональной подвижностью). Ее измеряют по максимальному количеству возбуждений, которое способно воспроизвести нервное волокно. У нервных волокон лабильность выше (до 1000 Гц) чем в других возбудимых структурах. Если нерв повредить (химическим веществом, нагреванием, охлаждением или током) не нарушая анатомическую целостность, то в нем развивается состояние парабиоза. При этом последовательно сменяются уравнительная, парадоксальная и тормозная фазы. В уравнительную фазу – при редких раздражениях все импульсы проводятся через поврежденный участок, а при высоком ритме только часть. В парадоксальную – ответная реакция на частые раздражения меньше, чем на редкие. В тормозную – нерв не проводит любые возбуждения. При выходе из парабиоза наблюдаются те же фазы, но в обратной последовательности.

Все мышцы обладают возбудимостью (способностью возбуждаться при действии раздражителей), проводимостью (способностью проводить возбуждение) и сократимостью (способностью изменять свою длину или напряжение при возбуждении). Для сердечных и части гладких мышечных волокон, дополнительно к перечисленным свойствам, характерна автоматия (способность к самопроизвольному возбуждению). Уникальным свойством всех гладких мышц является пластичность (способность долго сохранять приданную им длину).

Сила мышцы определяется максимальным грузом, который она может поднять, а работа – произведением величины поднятого груза на высоту подъема. Максимальная работа производится при средних величинах нагрузок. При изотоническом сокращении мышцы изменяется ее длина, а напряжение постоянно (так сокращаются мышцы при отсутствии сопротивления изменению длины). При изометрическом сокращении длина мышцы постоянна, а ее напряжение растет (например, при попытке поднять чрезмерный груз). В естественных условиях наблюдаются смешанные сокращения (изменяются и длина и напряжение мышцы).

Один стимул вызывает одиночное мышечное сокращение. В нем выделяют: латентный период (время от начала действия раздражителя до начала ответной реакции), фазу укорочения и фазу расслабления. Если каждый последующий стимул поступает к скелетной мышце в период ее укорочения – возникает гладкий тетанус, а в фазу расслабления – зубчатый тетанус. В естественных условиях к скелетной мышце поступает такая серия импульсов, на которую мышца отвечает гладким тетанусом. Его амплитуда, как правило, выше амплитуды одиночного сокращения. Н.Е. Введенский объяснил это оптимумом и пессимумом. Оптимум – частота, при которой раздражения наносятся в фазу повышенной возбудимости (тетанус максимальный). Пессимум – частота, при которой новое раздражение наносится в фазу пониженной возбудимости (тетанус – минимален).

При изучении скелетных и сердечных мышц в поляризованном свете, видны чередующиеся зоны с различной оптической плотностью (рис. 3). Это позволило разделить сократительные элементы поперечнополосатых мышечных волокон (миофибрилл) на функциональные единицы – саркомеры (участки между соседними Z-мембранами).

Рис. 3. Микрофотография участка поперечнополосатой мышцы.

Характерная оптическая плотность участков саркомера обусловлена особенностями расположения в них (рис. 4) сократительных белков (актина и миозина).

Рис. 4. Схема расположения сократительных белков в саркомере (в Н-зоне миозиновые фибриллы не имеют мостиков).

Около Z-мембран содержится актин (светлая область – изотропный или I-диск). Ближе к середине саркомера видны темные (анизотропные) А-диски с миозином и актином. В центре саркомера проходит М-линия. По обе стороны от нее расположен миозин (просветление или Н-зона). Актин с одной стороны прикреплен к Z-мембране, а с другой свободен и заканчивается между миозиновыми волокнами в области А-диска (на границе с Н-зоной). Оба конца миозиновой нити свободны.

При сокращении уменьшается ширина только изотропных дисков. Миозиновые нити при этом могут достигать своими концами Z-пластинок, а длина саркомеров – укорачиваться на 30-50%.

Механизм мышечного сокращения. Практически на всей миозиновой нити имеются боковые мостики (отсутствуют только около М-линии). После сцепления с актином они изменяют угол наклона (используя энергию АТФ), что продвигает сократительные белки относительно друг друга (саркомер укорачивается). Затем актин соединяется с другим мостиком миозина и совершается дальнейшее продвижение.

В покое соединению актина с миозином мешают белки тропонин и тропомиозин. При возбуждении они «нейтрализуются» поступающим в саркоплазму (цитоплазму мышечной клетки) кальцием и начинается взаимодействие сократительных белков. Прекращение возбуждения приводит к удалению кальция из саркоплазмы, тропонин с тропомиозином разрушают комплекс актина и миозина – мышца расслабляется.

В скелетных мышцах используется кальций из внутриклеточных цистерн саркоплазматической сети. Гладкие мышцы получают кальций только из межклеточных пространств, а сердечная мускулатура использует оба источника данного иона. Использование только внутриклеточных источников кальция позволяет скелетным мышцам сокращаться и расслабляться с наибольшей скоростью, а гладкая мускулатура – медленно изменяет свой тонус.

Синапс – функциональное соединение между нейроном и другими клетками. Существуют электрические и химические синапсы. Электрическим синапсам свойственно низкое электрическое сопротивление в области контакта клеток и ПД быстро передается на соседнюю мембрану. Химические синапсы состоят из пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 5.). Под влиянием нервных импульсов, в химических синапсах происходит высвобождение химического вещества – медиатора (например, ацетилхолина, норадреналина) из пресинаптических утолщений аксона в синаптическую щель и его взаимодействие с рецепторами на постсинаптической мембране. В возбуждающих синапсах это приводит к возникновению возбуждающего (ВПСП), а в тормозных – тормозного (ТПСП) постсинаптических потенциалов. После того как медиатор выполнил свою функцию, он разрушается или поглощается клетками.

Рис. 5. Схема строения химического синапса.

За пределами ЦНС наиболее распространен медиатор ацетилхолин. Он облегчает проведение возбуждения через вегетативные ганглии, повышает секрецию адреналина надпочечниками и соляной кислоты желудочными железами, угнетает работу сердца, вызывает сокращение гладких мышц некоторых внутренних органов и экзокринных желез. В гладких мышцах бронхов, кишечника, мочевого пузыря, матки, круговой и цилиарной мышцах глаза ацетилхолин приводит, соответственно, к бронхоспазму, усилению перистальтики кишечника и желудка (при расслаблении сфинктеров), сокращению мочевого пузыря и сужению зрачка.

По расположению синапсы делят на периферические (нервно-мышечные, рецепторно-нейрональные и т.д.); центральные (аксосоматические, аксодендритные и др.); по знаку действия (возбуждающие и тормозящие) и по выделяемому медиатору (холинергические, адренергические и др.).

Химические синапсы проводят возбуждение в одном направлении; передают возбуждение медленнее, чем по нервному волокну (синаптическая задержка); имеют низкую лабильность, а также высокую утомляемость и чувствительность к химическим веществам.

Физиология центральной нервной системы

Нервная система подразделяется на центральную (мозг) и периферическую (периферические нервы и ганглии). Центральная нервная система (ЦНС) воспринимает информацию от рецепторов, анализирует ее и дает адекватную ситуации команду исполнительным органам. Функциональной единицей нервной системы является нейрон. В нем различают (рис. 6.) тело (сому) с крупным ядром и отростки (дендриты и аксон). Главная функция аксона – проведение нервных импульсов от тела. Дендриты проводят импульсы к соме. По чувствительным (сенсорным) нейронам импульсы передаются от рецепторов, а по эфферентным – от ЦНС к эффекторам. Большинство нейронов в ЦНС – вставочные (анализируют и хранят информацию, а также формируют команды).

Рис. 6. Схема строения нейрона.

Деятельность ЦНС имеет рефлекторную природу. Рефлекс – это ответная реакция организма на раздражение, осуществляемая при участии ЦНС.

Рефлексы классифицируют по биологическому значению (ориентировочные, оборонительные, пищевые и т.д.), расположению рецепторов (экстероцептивные – вызываемые раздражением поверхности тела, интероцептивные – вызываемые раздражением внутренних органов и сосудов; проприоцептивные – возникающие при раздражении рецепторов, находящихся в мышцах, сухожилиях и связках), в зависимости от органов, участвующих в формировании ответной реакции (двигательные, секреторные, сосудистые и др.), в зависимости от того, какие отделы мозга необходимы для осуществления данного рефлекса (спинальные, для которых достаточно нейронов спинного мозга; бульбарные – возникают при участии продолговатого мозга; мезэнцефальные – средний мозг; диэнцефальные – промежуточный мозг; кортикальные – нейроны коры головного мозга). Однако в большинстве рефлекторных актов участвуют практически все отделы ЦНС. Рефлексы также делят на безусловные (врожденные) и условные (приобретенные). Материальным субстратом рефлекса является рефлекторная дуга – нейронная цепь, по которой проходит импульс от рецептивного поля (участка тела, раздражение которого вызывает определенный рефлекс) к исполнительному органу. В состав классической рефлекторной дуги входят: 1) рецептор; 2) чувствительное волокно; 3) нервный центр (объединение вставочных нейронов, обеспечивающее регуляцию определенной функции); 4) эфферентное нервное волокно.

Для нервных центров характерны следующие свойства:

Одностороннее проведение возбуждения (от чувствительного нейрона к эфферентному).

Более медленное проведение возбуждения по сравнению с нервными волокнами (большая часть времени тратится на проведение возбуждения в химических синапсах – в каждом по 1,5-2 мс).

Суммирование афферентных импульсов (проявляется усилением рефлекса).

Конвергенция – несколько клеток могут передавать импульсы к одному нейрону.

Иррадиация – один нейрон может влиять на множество нервных клеток.

Окклюзия (закупорка) и облегчение. При окклюзии количество возбужденных нейронов при одновременном раздражении двух нервных центров меньше, чем сумма возбужденных нейронов при раздражении каждого центра в отдельности. Облегчение характеризуется противоположным эффектом.

Трансформация ритма. Частота импульсов на входе в нервный центр и выходе из него обычно не совпадает.

Последействие – возбуждение может сохраняться после прекращения раздражения.

Высокая чувствительность к недостатку кислорода и ядам.

Низкая функциональная подвижность и высокая утомляемость.

Посттетаническая потенциация – усиление рефлекторного ответа после длительного раздражения центра.

Тонус – даже при отсутствии раздражений многие центры генерируют импульсы.

Пластичность – способны изменять собственное функциональное назначение.

К основным принципам координации работы нервных центров относятся:

Иррадиация – сильное и длительное раздражение рецептора, может вызвать возбуждение большего числа нервных центров (например, если слабо раздражать одну конечность, то сокращается только она, если же раздражение усилить, то сокращаются обе конечности).

Принцип общего конечного пути – импульсы, приходящие в ЦНС по разным волокнам, могут сходиться к одним нейронам (например, мотонейроны дыхательной мускулатуры участвуют в дыхании, чихании и кашле).

Принцип доминанты (открыт А.А. Ухтомским) – один нервный центр может подчинять себе деятельность всей нервной системы и определять выбор приспособительной реакции.

Принцип обратной связи – она позволяет соотнести изменения параметров системы с ее работой.

Принцип реципрокности – отражает отношения противоположных по функции центров (например, вдох и выдох) и заключается в том, что возбуждение одного из них, тормозит другой.

Принцип субординации (соподчинения) – регуляция сосредоточена в высших отделах ЦНС, а главной является кора больших полушарий.

Принцип компенсации функций – функции поврежденных центров могут выполнять другие структуры мозга.

В нервной системе постоянно взаимодействуют процессы возбуждения и торможения. Возбуждение вызывает рефлекторные реакции, а торможение приспособливает их силу и скорость к имеющимся потребностям.

Торможение в ЦНС открыто И.М.Сеченовым. Несколько позднее Гольц показал, что торможение может вызвать и сильное возбуждение.

Различают следующие виды центрального торможения:

Постсинаптическое (основной вид торможения) – заключается в том, что выделяемый тормозной медиатор гиперполяризует постсинаптическую мембрану, что снижает возбудимость нейрона.

Пресинаптическое – локализуется в отростках возбуждающего нейрона.

Поступательное – обусловлено тем, что на пути следования возбуждения встречается тормозной нейрон.

Возвратное – осуществляется вставочными тормозными клетками.

Пессимальное – связано со стойкой деполяризацией постсинаптической мембраны при частом или длительном раздражении.

Торможение вслед за возбуждением – если после стимуляции на нейроне развивается гиперполяризация то новый обычный по силе импульс не вызывает возбуждения.

Реципрокное торможение – обеспечивает согласованную работу структур-антагонистов, например, мышц-сгибателей и разгибателей.

ЧАСТНАЯ ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Центральная нервная система состоит из головного и спинного мозга.

Спинной мозг располагается в позвоночном канале и состоит из сегментов. Один сегмент иннервирует один свой и два соседних метамера тела. Поэтому поражение одного сегмента приводит к снижению чувствительности в них, а полная ее потеря наблюдается только при повреждении не менее двух соседних сегментов. Каждый из них имеет задние корешки, белое вещество, серое вещество и передние корешки (рис. 7.).

Рис. 7. Рефлекторная дуга спинального рефлекса.

Нервный импульс от рецептора передаётся на дендриты чувствительного (афферентного) нейрона. Тело афферентного нейрона расположено в ганглии заднего (дорсального) корешка), а его аксон связан с вставочными нейронами в сером веществе спинного мозга. Импульс от них передаётся на эфферентный нейрон и по его аксону (в составе переднего корешка) поступает к эффектору.

В задних корешках проходят чувствительные центростремительные нервные волокна от рецепторов. Передние корешки – центробежные (двигательные и вегетативные). Если справа перерезать задние корешки, а слева – передние, то правые конечности теряют чувствительность, но способны к движению, а левые сохраняют чувствительность, но не совершают движения.

В сером веществе спинного мозга находятся тела мотонейронов или двигательных нейронов (в передних рогах), интернейронов или промежуточных нейронов (в задних рогах) и вегетативных нейронов (в боковых рогах).

Белое вещество спинного мозга по восходящим путям передает информацию от рецепторов в вышележащие отделы ЦНС, а нисходящие проводящие пути спинного мозга идут от вышележащих нервных центров.

Собственные рефлексы спинного мозга являются сегментарными. Например, шейные и грудные сегменты содержат центры движения рук, а крестцовые – нижних конечностей. В крестцовых сегментах расположен центр отделения мочи.

Полное пересечение спинного мозга приводит к спинальному шоку (временному прекращению деятельности находящихся ниже места перерезки сегментов). Он вызван потерей связи с вышележащими отделами ЦНС. Шок длится у лягушки несколько минут, у обезьян – недели или месяцы, у человека – несколько месяцев.

В головном мозге выделяют (рис. 8.) три основных отдела: ствол, промежуточный и конечный мозг. В свою очередь ствол состоит из продолговатого мозга, варолиева моста, среднего мозга и мозжечка.

Рис. 8. Основные отделы головного мозга.

Границей между спинным и продолговатым мозгом является место выхода первых шейных корешков.В продолговатый мозг нет сегментов, но есть скопления нейронов (ядра). Они образуют центры вдоха и выдоха, сосудодвигательный центр (регулирует тонус сосудов и уровень кровяного давления), главный центр сердечной деятельности, центр слюноотделения и многие другие. Повреждение продолговатого мозга заканчивается смертью. Это объясняется присутствием в нем жизненно важных центров (дыхательного и сердечно-сосудистых).

Продолговатый мозг отвечает за такие защитные рефлексы как рвота, кашель, чихание, слезоотделение, смыкание век, а также сосание, жевание и глотание. Он же участвует в поддержании позы, перераспределении тонуса мышц при движении, осуществлении первичного анализа кожного, вкусового, слухового и вестибулярного раздражений.

Варолиев мост выполняет двигательные, сенсорные, интегративные и проводниковые функции. Двигательные ядра моста иннервируют мимические и жевательные мышцы, мышцы, отводящие глазное яблоко кнаружи и напрягающие барабанную перепонку. Чувствительные ядра получают сигналы от рецепторов кожи лица, слизистой носа, зубов, надкостницы костей черепа, конъюнктивы и отвечают за первичный анализ вестибулярных и вкусовых раздражений. Вегетативные ядра регулируют секреторную активность слюнных желез. В мосте также располагается пневмотаксический центр, поочередно запускающий центры выдоха и вдоха. Ретикулярная формация моста активирует кору больших полушарий и вызывает пробуждение

В среднем мозге имеются ядра обеспечивающие поднятие верхнего века, движения глаз, изменения просвета зрачка и кривизны хрусталика. Красные ядра тормозят активность ядер Дейтерса в продолговатом мозге. Перерезка между средним и продолговатым мозгом приводит к децеребрационной ригидности (повышается тонус мышц-разгибателей конечностей, шеи и спины). Это связано с ростом активности ядра Дейтерса. Черное вещество регулирует акты жевания и глотания, а также координирует точные движения пальцев рук. Ретикулярная формация среднего мозга регулирует развитие сна и его смену бодрствованием. Бугры четверохолмия обеспечивают зрительный (поворот головы и глаз в сторону светового раздражителя, фиксацию взора и слежение за движущимися объектами) и слуховой (поворот головы в сторону источника звука) ориентировочные рефлексы. Средний мозг также участвует в рефлекторном удержании частей тела на месте, а также корректирует ориентацию конечностей при смене их положения.

Мозжечок непрерывно получает информацию от мышц, суставов, органов зрения и слуха. Он под контролем коры отвечает за программирование сложных движений, координацию позы и соразмерное целенаправленное движение. Мозжечок влияет на возбудимость отделов конечного мозга, участвует в вегетативном обеспечении деятельности скелетных мышц и сердечнососудистой системы, а также обмена веществ и кроветворения.

Поражения мозжечка сопровождаются: астенией (снижением силы мышечных сокращений и быстрой утомляемостью), атаксией (нарушением координации движений – они размашисты, резки, конечности при ходьбе забрасываются за среднюю линию, наклон головы вниз или в сторону вызывает сильное противоположное движение), астазией (невозможностью сохранить равновесие – животное стоит с широко расставленными лапами), атонией (снижением тонуса мышц), тремором (дрожанием конечностей и головы в покое) и неравномерными движениями.

Основными структурами промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорье).

Таламус является местом обработки всей информации, направляющейся от всех (кроме обонятельных) рецепторов в кору головного мозга.

Главной функцией таламуса является оценка биологического значения всей полученной информации, а затем ее объединение и передача в кору.

У человека зрительный бугор также необходим для проявления эмоций своеобразной мимикой, жестами и вегетативными реакцииями.

Гипоталамус является главным подкорковым вегетативным центром. Раздражение одних его ядер имитирует эффекты парасимпатической нервной системы. Стимуляция других – сопровождается симпатическими эффектами. Ядра гипоталамуса также регулируют смену цикла цикла «сон-бодрствование», обмен веществ и энергии, пищевое (здесь находятся: центр насыщения, центр голода и центр жажды) и половое поведение, мочеотделение, формирование эмоций.

Регуляцию многих функций гипоталамус осуществляет через железы внутренней секреции и, в первую очередь, через гипоталамус.

Преимущественно в стволе мозга располагается ретикулярная формация (РФ). Лишь небольшое количество относящихсяк ней образований находится в таламусе и в верхних сегментах спинного мозга. Ретикулярная формация оказывает генерализованное активирующее влияние на передние отделы головного мозга и всю кору (восходящая активирующая система), а также нисходящее (облегчающее и тормозное) влияние на спинной мозг. Основными, контролирующими моторную активность структурами РФ являются ядро Дейтерса (продолговатый мозг) и красное ядро (средний мозг).

РФ среднего мозга рефлекторно изменяет работу глазодвигательного аппарата (особенно при внезапном появлении движущихся объектов, изменении положения головы и глаз) и регулирует вегетативные функции (например, кровообращение). В РФ продолговатого мозга расположены центры вдоха и выдоха (их деятельность контролируется пневмотаксическим центром варолиева моста), а также сосудодвигательный центр.

Раздражение РФ вызывает «реакцию пробуждения» и ориентировочный рефлекс, влияет на остроту слуха, зрение, обоняние и болевую чувствительность. Перерезка мозга ниже РФ вызывает бодрствование, выше – сна.

Лимбическая система – функциональное объединение структур ЦНС, обеспечивающее (во взаимодействии с отделами коры больших полушарий) эмоционально-мотивационные компоненты поведения и интеграцию функций организма, направленных на его приспособление к условиях существования. Она отвечает на афферентную информацию от поверхности тела и внутренних органов организацией поведенческих актов (половых, оборонительных, пищевых), формированием мотиваций и эмоций, обучением, хранением информации, а также сменой фаз сна и бодрствования.

К отделам лимбической системы относят (рис. 9.): обонятельную луковицу и обонятельный бугорок (у человека развиты слабо), сосцевидные тела, гиппокамп, таламус, миндалину, поясную и гаппокампальную извилины. Нередко к лимбической системе относят большее число структур (например, части лобной и височной коры, гипоталамуса и РФ среднего мозга).

Рис. 9. Основные структуры лимбической системы.

Многие сигналы в лимбической системе проходят по кругам. В «круге Пейпеса» импульсы из гиппокампа переходят в сосцевидные тела, из них в ядра таламуса, затем через поясную и гиппокампальную извилины возвращаются в гиппокамп. Описанная циркуляция обеспечивает формированиие эмоций, памяти и обучение. Другой круг (миндалина → гипоталамус → мезенцефальные структуры → миндалина) регулирует пищевые, сексуальные и агрессивно-оборонительные формы поведения.

Стимуляция определенных зон лимбической системы вызывают приятные ощущения («центры удовольствия»). Рядом с ними находятся структуры, приводящие к реакциям избегания («центры неудовольствия»).

Повреждение лимбической системы приводит к выраженному нарушению социального поведения (ведут себя отчужденно, встревожены и не уверены в себе) и сопоставления новой информации с хранящейся в памяти (не отличают съедобные предметы от несъедобных и поэтому всё берут в рот), становится невозможна концентрация внимания.

Большие полушария и соединяющая их область (мозолистое тело и свод) относятся к конечному мозгу. Каждое полушарие делят на лобную, теменную, затылочную, височную и скрытую (островок) доли. Их поверхность покрыта корой. К конечному мозгу у человека относятся также скопления серого вещества внутри полушарий (базальные ядра). Отделяет полушарие от ствола мозга гиппокамп. Между базальными ядрами и корой находится белое вещество. Оно состоит из множества нервных волокон, соединяющих различные части полушарий друг с другом и иными отделами мозга.

Базальные ганглии обеспечивают переход от замысла движения к действию, управляют силой, амплитудой и направлением движений лица, рта и глаз, тормозят безусловные рефлексы и выработку условных рефлексов, участвуют в формировании памяти и восприятии информации, отвечают за организацию пищевого поведения и ориентировочных реакций.

После разрушения базальных ганглиев возникают: маскообразное лицо, гиподинамия, эмоциональная тупость, подергивание головы и конечностей при движении, монотонная речь, нарушение согласованности перемещения конечностей при ходьбе.

Кора больших полушарий (КБП) головного мозга состоит из множеств нейронов и представляет собой слой серого вещества.

На основании эволюционного подхода, различают древнюю, старую и новую кору. К древней относят мало развитые у человека обонятельные структуры. Старую кору составляют основные части лимбической системы: поясная извилина, гиппокамп, миндалина. Тесная связь древней и старой коры обеспечивает эмоциональный компонент обонятельного восприятия.

Новая кора выполняет наиболее сложные функции. К её сенсорной области сходятся все чувствительные пути. Площадь проекции каждого формирующегося в коре ощущения прямо пропорциональна его важности (проекции с кожи кисти рук больше, чем со всего туловища). В затылочной доле располагается корковая часть зрительного (информирует о свойствах светового сигнала) анализатора. Ее удаление приводит к слепоте. Корковая часть слухового анализатора локализуется в височной доле (воспринимает и анализирует звуковые сигналы, организует слуховой контроль речи). Ее удаление вызывает глухоту. Тактильная, болевая, температурная и другие виды кожной чувствительности проецируются в теменную долю.

Моторные (двигательные) области находятся в лобных долях. В них, каждая группа нейронов отвечает за произвольную активность отдельных мышц (их сокращение вызывается раздражением определенных участков коры). Причем, величина корковой двигательной зоны пропорциональна не массе управляемых мышц, а точности движений (самые большие зоны управляют движениями кисти руки, языком, мимической мускулатурой). Левое полушарие непосредственно связано с двигательными механизмами речи. При его поражении больной понимает речь, но говорить не может.

Моторные области получают необходимую для принятия решения и исполнения информацию из ассоциативных областей (занимают около 80% всей поверхности полушарий), которые объединяют поступающие в неё от всех рецепторов сигналы в целостные акты научения, мышления и долговременной памяти, а также формируют программ целенаправленного поведения. Если теменная ассоциативная кора формирует представления об окружающем пространстве и теле, то височная – участвует в слуховом контроле речи, а лобная – формирует сложное поведение. При повреждении ассоциативных зон ощущения сохранены, но нарушена их оценка. Это проявляется апраксиями (неспособностью производить заученные движения: застегивание пуговиц, написание текста и др.) и агнозиями (расстройствами узнавания). При моторной агнозии – понимает речь, но говорить не может, при сенсорной – говорит, но не понимает речи.

Таким образом, конечный мозг играет роль органа сознания, памяти и умственной деятельности, что проявляется в поведении и необходимо для приспособления человека к меняющимся условиям среды обитания.

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

Нервная система разделена на соматическую и вегетативную. Все эффекторные нейроны соматической нервной системы являются мотонейронами. Они начинаются в ЦНС и заканчиваются на скелетной мускулатуре. Вегетативная нервная система иннервирует все внутренние органы, железы (секреторные нейроны), гладкую мускулатуру (мотонейроны) сосудов, пищеварительного тракта и мочевыводящих путей, а также регулирует обмен веществ (трофические нейроны) в различных тканях.

Афферентное звено соматической и вегетативной рефлекторных дуг общее. Аксоны центральных вегетативных нейронов выходят из ЦНС и переключаются в ганглиях на периферический нейрон, который иннервирует соответствующие клетки.

Вегетативная нервная система делится на симпатическую и парасимпатическую.

Симпатическая нервная система иннервирует все органы и ткани организма. Ее центры представлены в боковых рогах серого вещества спинного мозга (от I грудного до II-IV поясничных сегментов). При возбуждении они усиливают работу сердца, рассширяют бронхи и зрачок, снижают активность пищеварения, вызывают сокращение сфинктеров мочевого и желчного пузырей. Симпатические влияния быстро мобилизуют связанный с расходом энергии обмен веществ, дыхание и кровообращение в организме, что позволяет ему оперативно реагировать на неблагоприятные факторы. Этим объясняется и повышение работоспособности скелетных мышц при раздражении симпатического нерва (феномен Орбели – Гинецинского).

Парасимпатическими центрами являются ядра в стволе мозга и крестцовом отделе спинного мозга. Парасимпатическая нервная система не иннервирует скелетные мышцы, многие кровеносные сосуды и органы чувств. При ее возбуждении тормозится работа сердца, сужаются бронхи и зрачок, стимулируется пищеварение, опорожняются желчный и мочевой пузыри, а также прямая кишка. Вызванные парасимпатической нервной системой изменения обмена обеспечивают восстановление и поддержание постоянства состава внутренней среды организма, нарушенного при возбуждении симпатической нервной системы.

Вегетативные функции не подчиняются сознанию, но регулируются практически всеми отделами ЦНС. Стимуляция спинальных центров расширяет зрачок, усиливает потоотделение, сердечную деятельность и расширяет бронхи. Здесь же расположены центры дефекации, мочеиспускания, половых рефлексов. Стволовые центры регулируют зрачковый рефлекс и аккомодацию глаз, тормозят деятельность сердца, возбуждают слезоотделение, усиливают секрецию слюнных, желудочных и поджелудочной желез, а также желчевыделение, сокращения желудка и кишечника. Сосудодвигательный центр отвечает за рефлекторное изменение просвета сосудов. Гипоталамус являются главным подкорковым уровнем вегетативных функций. Он отвечает за появление эмоций, агрессивно-оборонительных и половых реакций. Лимбическая система отвечает за формирование вегетативного компонента эмоциональных реакций. Кора осуществляет высший контроль вегетативных функций, влияя на все подкорковые вегетативные центры, а также координируя вегетативные и соматические функции во время поведенческого акта.

Железы внутренней секреции

Интеграция клеток, тканей и органов в единый организм и приспособление его к изменениям внешней среды осуществляются за счет взаимодействия механизмов нервной и гуморальной регуляции. Гуморальная регуляция обеспечивается химическими веществами, поступающими во внутреннюю среду организма (кровь, лимфу, ликвор).

Высшей формой такой регуляции является гормональная. Гормоны – это органические вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами (железами внутренней секреции) и регулирующие функции удаленных органов и систем организма. В соответствии с преобладающими эффектами, гормоны делят на: эффекторные(влияют непосредственно на орган-мишень), тропные (регулируют секрецию эффекторных гормонов) и рилизинг-гормоны (либерины и статины).

ЦНС влияет на эндокринные железы через гипоталамус. Вырабатываемые им команды, через периферическую вегетативную нервную систему или гипофиз. Он состоит из передней (аденогипофиз), промежуточной (у человека практически отсутствует) и задней (нейрогипофиз) долей.

В аденогипофизе образуются адренокортикотропный (АКТГ), тиреотропный (ТТГ), соматотропный (СТГ или гормон роста) гормоны, а также пролактин и гонадотропины: фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГ) гормоны. Тропные гормоны (кроме СТГ) регулируют функции определенных эндокринных желез. На аденогипофиз избирательно влияют вырабатываемые гипоталамусом либерины (стимулируют выработку гормонов) и статины (тормозят секрецию).

АКТГ стимулирует образование глюкокортикоидов в коре надпочечников. Его секреция усиливается кортиколиберином гипоталамуса и сверхсильными раздражителями (стрессорами): холод, боль, физические нагрузки. Тормозят продукцию АКТГ глюкокортикоиды.

ТТГ активирует разрастание щитовидной железы и стимулирует выработку ей йодсодержащих гормонов (тироксина и трийодтиронина). Образование тиреотропина стимулируется тиреолиберином гипоталамуса и переохлаждением организма.

ФСГ вызывает рост и созревание половых клеток.

ЛГ стимулирует образование женских половых гормонов – эстрогенов, а у мужчин – мужских половых гормонов – андрогенов. Секреция ФСГ и ЛГ регулируется гонадолиберином, эстрогенами и андрогенами.

Пролактин стимулирует рост молочных желез, способствует образованию белков, жиров и углеводов молока. Образование пролактина регулируют пролактолиберин, пролактостатин и эстрогены.

СТГ усиливает образование белка в организме. Это способствует процессам роста и физического развития. Наиболее выражено влияние гормона на формирование скелета до полового созревания. Продукция СТГ регулируется соматолиберином и соматостатином. Гиперпродукция СТГ в детском возрасте усиливает пропорциональный рост тела (гигантизм), а у взрослого увеличиваются те части тела, которые еще способны расти (пальцы, кисти и стопы, нос, нижняя челюсть, язык, органы грудной и брюшной полостей) и возникает акромегалия. Гипофункция передней доли гипофиза в детстве задерживает рост – карликовость.

Гормоны окситоцин и антидиуретический гормон (АДГ) образуются в гипоталамусе, а затем транспортируются в заднюю долю гипофиза (нейрогипофиз). Здесь они накапливаются и в дальнейшем выделяются в кровь. АДГ стимулирует задержку воды в почках и концентрирует мочу, а также суживает артериолы. Секреция АДГ усиливается при повышении осмотического давления крови, уменьшении объемов вне- и внутриклеточной жидкостей, а также – снижении артериального давления. Недостаток АДГ проявляется потерей больших количеств воды (до 25 л в сутки) с мочой низкой плотности. Окситоцин вызывает сокращения мускулатуры матки при родах и способствует выведению молока. В мужском организме окситоцин может являться антагонистом АДГ.

Самой крупной эндокринной железой является щитовидная железа. Ее ткань вырабатывает йодсодержащие гормоны (тироксин и трийодтиронин) и тиреокальцитонин. Йодсодержащие гормоны усиливают все виды обмена органических веществ и энергообразование в организме, регулируют процессы роста, физического и умственного развития, частоту сердечных сокращений, деятельность пищеварительного тракта, температуру тела и возбудимость нервной системы. Секреция гормонов щитовидной железы регулирует ТТГ. Если недостаточность функции железы развивается в детском возрасте, то задерживается рост, нарушаются пропорции тела, половое и умственное развитие (кретинизм). У взрослых при гипофункции щитовидной железы развивается микседема. При ней заторможена нервная и психическая активность, нарушены половые функции, угнетены всех видов обмена. Гипофункция щитовидной железы может развиться у людей, проживающих в местностях, где отмечается недостаток йода. Щитовидная железа при этом заболевании увеличена (эндемический зоб), но гормонов образуется мало. При гиперфункции щитовидной железы развивается Базедова болезнь. Длянее характерны: увеличение щитовидной железы, тахикардия, повышение обмена веществ, похудание при увеличенном аппетите, нарушение терморегуляции, повышенная возбудимость и раздражительность. Кальцитонин (тиреокальцитонин) снижает уровень кальция в крови за счет усиления использования его в костной ткани, а также выведения через почки и кишечник. Продукция данного гормона регулируется уровнем кальция в плазме крови.

Клетки околощитовидных (паращитовидных) желез вырабатывают паратгормон. В костной ткани он усиливает деминерализацию кости и снижает потери кальция с мочой. Все это способствует повышению содержания данного иона в плазме крови. Паратгормон также стимулирует синтез витамина D3 (в печени и почках), усиливающего усвоение кальция кишечником. Высокие концентрации кальция в крови снижают секрецию паратгормона. Гипофункция околощитовидных желез повышает нервно-мышечную возбудимость, что проявляется подергиваниями и спазмами скелетных мышц. Гиперфункция околощитовидных желез приводит к остеопорозу.

В корковом слое надпочечников продуцируются минералокортикоиды, глюкокортикоиды и небольшие количества половых гормонов.

Наиболее распространенный представитель минералокортикоидов альдостерон уменьшает выделение натрия и увеличивает потери калия (с мочой, потом и слюной). При этом в организме задерживается вода, что увеличивает объем циркулирующей крови и повышает артериальное давление. Гипонатриемия или гиперкалиемия стимулируют выработку альдостерона.

Глюкокортикоиды (например, кортизол) повышают содержание глюкозы в плазме крови, что обусловлено стимуляцией образования глюкозы из аминокислот в печени и угнетением утилизации глюкозы тканями. Эти же гормоны усиливают распад белков (особенно в мышцах). В результате снижается мышечная масса и уменьшается скорость заживления ран. Глюкокортикоиды уменьшают лихорадку и оказывают противоаллергическое действие, угнетают механизмы иммунитета и повышают чувствительность гладких мышц сосудов к адреналину (может возрасти артериальное давление). Образование глюкокортикоидов стимулирует АКТГ.

В детском возрасте половые гормоны коры надпочечников способствуют развитию вторичных половых признаков и стимулируют синтез белка в организме. Если избыточно образуются гормоны одноименного пола, то ускоряется половое развитие, если противоположного пола – то появляются вторичные половые признаки, присущие другому полу.

Основные гормоны мозгового слоя надпочечников: адреналин и норадреналин. Физиологические эффекты адреналина и норадреналина близки к результатам активации симпатической нервной системы (стимулируют деятельность сердца, суживают многие сосуды, расслабляют бронхи, тормозят перистальтику и секрецию кишечника, расширяют зрачок, уменьшают потоотделение, усиливают процессы катаболизма и повышают содержание глюкозы в плазме крови), но проявляются более продолжительно.

Эндокринная функция поджелудочной железы заключается в продукции таких гормонов как инсулин и глюкагон. Инсулин влияет на все виды обмена, но прежде всего он способствует превращению глюкозы в гликоген в печени и мышцах, что уменьшает концентрацию глюкозы в крови. Кроме того, инсулин стимулирует синтез белка и способствует накоплению жира. Гипергликемия увеличивает выработку инсулина, гипогликемия уменьшает ее. Недостаточная секреция инсулина приводит к заболеванию, названному сахарным диабетом. Глюкагон ускоряет распад гликогена в печени (это повышает содержание глюкозы в крови). Гипергликемия тормозит образование глюкагона, гипогликемия – увеличивает его.

Половые железы (гонады) – семенники у мужчин и яичники у женщин. Они вырабатывают, соответственно, мужские (андрогены) и женские (эстрогены) половые гормоны. Наиболее важным андрогеном является тестостерон. Он обеспечивает развитие первичных (рост половых органов) и вторичных (мужской тип оволосения, низкий голос, характерное строение тела, особенности психики и поведения) половых признаков, появление половых рефлексов и созревание мужских половых клеток. Он также увеличивает синтез белка (особенно в мышцах), что ускоряет физическое развитие. Половые гормоны замедляют рост скелета, но стимулируют образование эритроцитов. Продукция тестостерона регулируется ЛГ. При нехватке тестостерона у детей, наблюдается евнухоидизм (недоразвитие половых органов и вторичных половых признаков) – небольшое туловище и длинные конечности, увеличено отложения жира на груди, бедрах и нижней части живота, слабая мускулатура, высокий тембр голоса, увеличены молочные железы, отсутствует половое влечение. При заболевании, развившемся у взрослых, наблюдается снижение оволосения, мышечной силы и потенции, а половое влечение часто сохранено. Усиленная продукция мужских половых гормонов в детском возрасте приводит к преждевременному половому созреванию.

Эстрогены ускоряют рост яичников, молочных желез, а также внутренних и наружных половых органов. Данные гормоны влияют на эмоциональное и психическое состояние, ускоряют развитие скелета, способствуют оволосению и распределению жира по женскому типу. Недостаток эстрогенов с детского возраста приводит к недоразвитию половых органов, отсутствию половых циклов и недоразвитию молочных железы.

Физиология крови

Более 100 лет назад физиолог Клод Бернар пришел к заключению, что «постоянство внутренней среды организма есть условие независимого существования», т.е. жизни. На основании этого введен термин гомеостаз. Под ним понимают динамическое постоянство внутренней среды организма. Универсальной внутренней средой организма является кровь. Она циркулирует по всему живому организму и любые, выходящие за границы гомеостаза, изменения ее свойств нарушают жизненно важные процессы практически во всех тканях человека.Наряду с гомеостатической, кровь выполняет транспортную и защитную функции.

Разновидностями транспортной функции являются дыхательная (перенос кислорода от легких к тканям организма, углекислого газа – от клеток к легким), трофическая (перенос основных питательных веществ от органов пищеварения к тканям организма), экскреторная (транспортной конечных продуктов обмена веществ, избытка воды, органических и минеральных веществ к органам выделения), регуляторная или гуморальная (доставка гормонов, пептидов, ионов и других физиологически активных веществ от мест их синтеза к клеткам организма, что позволяет осуществлять регуляцию многих физиологических функций) и терморегуляторная (перенос тепла от более нагретых органов к менее нагретым).

Защитная функция обеспечивает иммунные реакции и свертывание крови.

Объем крови в организме взрослого человека составляет 6-8% от массы тела. Относительная плотность крови – 1.050-1.060. Вязкость – 5 усл.ед. (вязкость воды принята за 1 усл.ед.).

Осмотическое давление крови (сила, с которой растворитель переходит через полунепроницаемую мембрану в более концентрированный раствор) близко к 7,6 атм. Оно приблизительно на 60% создается хлористым натрием и определяет распределение воды между тканями и клетками. Если эритроциты поместить в солевой раствор, имеющий осмотическое давление, одинаковое с кровью, они не изменяют свой объем. Такой раствор называют изотоническим, или физиологическим. В растворе с повышенным осмотическим давлением (гипертонический раствор) эритроциты теряют воду и сморщиваются. В растворе с низким осмотическим давлением (гипотонический раствор), эритроциты набухают. Онкотическое давление крови (часть осмотического давления, создаваемая белками) равно 0,03-0,04 атм, или 25-30 мм рт.ст. При снижении онкотического давления крови, вода выходит из сосудов в межклеточное пространство, что приводит к отеку.

Кислотно-основное состояние крови (КОС) измеряется в единицах pH. В норме pH артериальной крови – 7,4; венозной – 7,35. Сдвиг реакции в кислую сторону называется ацидозом, в щелочную – алкалозом. Поддержание постоянства pH крови обеспечивается гемоглобиновой, карбонатной, фосфатной и белковой буферными системами. Гемоглобиновая буферная система на 70-75% обеспечивает буферную емкость крови. Карбонатная система по своей мощности занимает второе место. Поддержание pH осуществляется также с помощью легких и почек. Через легкие удаляется избыток углекислоты, а почки могут выделять фосфаты и бикарбонаты.

Кровь состоит из плазмы (55-60% от объема крови) и форменных элементов (40-45%). Объем клеток в крови (выраженный в %, по отношению к объму всей крови) назван гематокритом.

Плазма на 91% состоит из воды. Органические вещества сухого остатка плазмы в основном (7-8% от массы крови) представлены белками: альбуминами, глобулинами и фибриногеном. Наименьшую молекулярную массу и большую концентрацию среди белков поазмы имеют альбумины. Они создают около 80% онкотического давления, осуществляют питательную функцию (резерв аминокислот для клеток), переносят холестерин, жирные кислоты, билирубин, соли желчных кислот и тяжелые металлы. Глобулины делят на альфа-, бета- и гамма-фракции. Только гамма-глобулины образуются в лимфоцитах, а практически все другие белки плазмы синтезируются в печени. Альфа- и бета- глобулины транспортируют гормоны, витамины, макро- и микроэлементы, липиды. К этим фракциям глобулинов относят и биологически активные вещества (например, эритропоэтин и факторы свертывания крови). Гамма-глобулины выполняют функции антител (иммуноглобулинов), защищающих организм от вирусов и бактерий. К органическим веществам плазмы крови относятся также многие небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак) и безазотистые вещества (глюкоза, нейтральные жиры, липиды и др.). Неорганические вещества плазмы крови составляют 0,9-1%. Значительную их часть составляют ионы натрия, кальция, калия, магния, хлора, фосфаты и карбонаты. Ионы обеспечивают нормальную функцию всех клеток организма, обусловливают осмотическое давление, регулируют pH. В плазме присутствуют витамины, микроэлементы и промежуточные продукты метаболизма (например, молочная кислоты).

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты. Их содержание в крови должно быть постоянным. Повышение количества клеток в крови называется цитозом (например, эритроцитоз), уменьшение – пенией (например, эритропения).

Эритроциты человека лишены ядра, заполнены гемоглобином и имеют форму двояковогнутого диска. Они выполняют дыхательную (переносят молекулярный кислород от легких к тканям и углекислый газ от тканей к легким), буферную, питательную (доставляют необходимые для обмена вещества) и защитную (связывают токсины и участвуют в свертывании крови) функции.

Основным белком в эритроцитах является гемоглобин. В крови плода много гемоглобина F (фетальный гемоглобин), а у взрослого человека – гемоглобина А (гемоглобин взрослых). У фетального гемоглобина сродству к кислороду больше, чем у гемоглобина А. Это помогает плоду получать кислород из крови матери.

После обратимого связывания с молекулярным кислородом дезоксигемоглобин превращается в оксигемоглобин, а углекислого газа – в карбгемоглобин. Не способны отдавать связанный кислород и, поэтому, опасны для жизни соединения гемоглобина с угарным газом (карбоксигемоглобин) и с сильными окислителями (бертолетовая соль и др.) – метгемоглобин.

Степень насыщения эритроцитов гемоглобином вычисляют по цветовому показателю (в норме он близок к единице).

Разрушение оболочки эритроцитов и выход из них гемоглобина называется гемолизом. По вызвавшей его причине, он может быть осмотическим (возникает в гипотонической среде), химическим (разрушают эритроцит кислоты, щелочи и другие химические вещества), биологическим (в результате действия антител при переливании несовместимой крови, а также компонентов яда змей и насекомых), температурным (при замораживании и размораживании крови) и механическим (вызывается сильными механическими воздействиями, например – встряхиванием крови).

Скорость оседания эритроцитов (СОЭ) зависит от количества, объема и заряда эритроцитов, их способности к агрегации и белкового состава плазмы. СОЭ увеличивается при беременности, стрессе, воспалительных заболеваниях, эритропении и повышенном содержании фибриногена.

Образование эритроцитов (эритропоэз) происходит в красном костном мозге. Для этого организм получает железо из гемоглобина разрушающихся эритроцитов и с пищей. При недостатке железа развивается железодефицитная анемия. Для образования эритроцитов требуются и витамины. Витамин В12 способствует синтезу глобина и вместе с фолиевой кислотой участвует в синтезе ДНК для созревающих эритроцитов. Витамин В2 необходим для образования клеточных мембран. Витамин В6 участвует в образовании гема. Витамин С стимулирует усвоение железа и усиливает действие фолиевой кислоты. Витамин Е и PP защищают эритроциты от гемолиза. Для нормального эритропоэза нужны также медь, никель, кобальт и цинк.

Эритроциты циркулируют в крови 100-120 дней, а затем разрушаются в печени, селезенке и костном мозге.

Физиологическими регуляторами эритропоэза являются эритропоэтины (образуются в почках, печени и селезенке). Они ускоряют образование эритроцитов и увеличивают их выход в кровь.

Лейкоциты – бесцветные клетки с ядром. Физиологические (возникающие в здоровом организме) лейкоцитозы по причинам их возникновения делят на пищевой, миогенный (вызван мышечной работой) и эмоциональный. С учетом особенностей окраски и выполняемых функций лейкоциты делят (рис. 10) на зернистые (гранулоциты) и незернистые (агранулоциты). Среди гранулоцитов выделяют нейтрофилы, эозинофилы и базофилы. К агранулоцитам относятся моноциты и лимфоциты.

Рис.10. Виды лейкоцитов.

Самыми многочисленными и подвижными лейкоцитами являются нейтрофилы (микрофаги). Основная их функция – фагоцитоз бактерий и продуктов распада тканей.

Эозинофилы разрушают белки и гистамин (выделяется базофилами и тучными клетками), а также осуществляют противоглистный иммунитет.

Базофилы продуцируют биологически активные вещества (гепарин, гистамин и др.) при повреждениии тканей. Гепарин препятствует свертыванию крови, а гистамин расширяет капилляры, что способствует рассасыванию очага воспаления и заживлению.

Самыми крупными клетками крови являются моноциты. Они, после перехода из крови в ткани, превращаются в макрофаги, способны к фагоцитозу даже в кислой среде (нейтрофилы в этих условиях теряют свою активность). Фагоцитируя микробы, вирусы и собственные поврежденные клетки, макрофаги подготавливают место воспаления для восстановления. Макрофаги также продуцируют вещества, необходимые для противоопухолевой, противовирусной, противомикробной и противопаразитарной защиты, участвуют в регуляции гемопоэза, свертывания крови, фибринолиза и развития иммунного ответа на новый антиген.

Лимфоциты являются единственной разновидностью лейкоцитов, обеспечивающей специфические иммунные. Для каждого, появившегося в организме здорового человека чужеродного антигена возникают свои клоны лимфоцитов. Именно это лежит в основе выработки эффективного иммунитета при вакцинации. Различают (рис. 11) Т- и В-лимфоциты. По механизму участия в иммунных реакциях Т- лимфоциты делят на киллеры, хелперы и супрессоры. Т-киллеры лизируют бактерии, опухолевые клетки и собственные клетки-мутанты. Т-хелперы способствуют активации иммунитета. Т-супрессоры блокируют его чрезмерные реакции. В-лимфоциты продуцируют антитела (гамма-глобулины).

Главной функцией тромбоцитов (кровяных пластинок) является участие в гемостазе (остановке кровотечения). Они способны прилипать к чужеродной поверхности (адгезия), склеиваться между собой (агрегация) и продуцировать биологически активные вещества. Тромбоциты также фагоцитируют инородные тела и иммунные комплексы, выполняя защитную функцию. Образование тромбоцитов красным костным мозгом усиливают тромбоцитопоэтины (синтезируются в костном мозге, селезенке и печени), продукция которых растет при воспалении и необратимой агрегации тромбоцитов.

Кровь циркулирует в жидком состоянии, а в месте нарушения целостности кровеносных сосудов, должна своевременно свертываться. За это отвечает система регуляции агрегатного состояния крови. В ее работе участвуют свертывающая, противосвертывающая и фибринолитическая системы. Жидкое состояние крови поддерживают одинаковый знак заряда поверхностей неповрежденных стенок сосудов и клеток крови, секреция эндотелием сосудов простациклина (блокирует агрегацию тромбоцитов), антитромбина и активаторов фибринолиза, неактивное состояние факторов свертывающей системы крови и быстрый кровоток.

Для гемокоагуляции (свертывания крови) необходимы находящиеся в тромбоцитах и плазме факторы свертывания. Плазменные факторы обозначают римскими цифрами. Например, фибриноген – I фактор, протромбин – II фактор, тромбопластин – III фактор, ионы кальция – IV фактор. Вещества, находящиеся в тромбоцитах, получили название тромбоцитарных (пластинчатых) факторов. Их обозначают арабскими цифрами. Например, ПФ-3 – тромбоцитарный тромбопластин, ПФ-6 – тромбостенин. Аналогичные вещества (но в меньших концентрациях) есть в эритроцитах и лейкоцитах. Поэтому разрушение любых клеток крови ускоряет ее свертывание.

Различают сосудисто-тромбоцитарный и коагуляционный механизмы гемостаза. Благодаря сосудисто-тромбоцитарному гемостазу прекращается кровотечение из мелких сосудов с низким давлением. При травме рефлекторно спазмируются поврежденные кровеносные сосуды. Этому способствуют освобождающиеся из тромбоцитов и поврежденных клеток сосудосуживающие вещества (серотонин, адреналин и др.). Внутренняя стенка сосудов в месте повреждения теряет свой заряд и тромбоциты скапливаются на ее поверхности, образуя пробку. Эта реакция протекает под действием тромбина, образующегося в небольших количествах из протромбина под действием тканевой протромбиназы. Тромбин разрушает тромбоциты, что ведет к выходу из них факторов, ускоряющих отложение на агрегатах тромбоцитов нитей фибрина, которые задерживают эритроциты и лейкоциты. После образования тромбоцитарного тромба он уплотняется и закрепляется в поврежденном сосуде за счет ретракции сгустка под действием тромбостенина. Тромб образуется в течение 1-3 минут и кровотечение из мелких сосудов останавливается.

В крупных сосудах с высоким давлением для гемостаза требуется более прочный тромб. Сначала активируются тканевая и кровяная протромбиназы. Затем протромбин переходит в тромбин, а фибриноген под действием тромбина превращается в фибрин (основа тромба). Между фибриновыми нитями оседают клетки крови. Затем формирующийся тромб подвергается ретракции (уплотнению). Через 2-3 часа он сжимается до 25-50% от своего первоначального объема, становится плотным и стягивает края раны. После того как тромб выполнил свою функцию, начинается фибринолиз (разрушение фибринового сгустка плазмином).

На эритроцитах обнаружены агглютиногены, определяющие группы крови. Наибольшее практическое значение в этом имеют система АВО и резус-фактор. На основании присутствия агглютиногенов А и В, кровь делят на 4 группы. В I группе агглютиногенов нет, а в плазме содержатся агглютинины альфа и бета; во II группе есть агглютиноген А и агглютинин бета; в III группе – агглютиноген В и агглютинин альфа, в IV группе имеются оба агглютиногена, но нет агглютининов. Агглютинация (склеивание), а затем гемолиз эритроцитов происходят при встрече агглютиногена А с агглютинином альфа или агглютиногена В с агглютинином бета. Рекомендуется переливать только одногруппную кровь. Однако, по жизненным показаниям, допускают переливание небольших объемов крови на основании учета наличия только агглютиногенов на эритроцитах донора (состав донорской плазмы во внимание не принимают, так как она сильно разбавляется кровью реципиента). Поэтому кровь I группы можно переливать всем (универсальная донорская кровь). Кровь II группы – только реципиентам со II и IV группами, кровь III группы – с III и IV. Кровь IV группы можно переливать только реципиентам этой группы, а тем, у кого IV группа крови можно переливать любую кровь (универсальные реципиенты).

У многих людей на эритроцитах обнаружен резус-фактор. Кровь с ним названа резус-положительной (Rh+), без него – резус-отрицательной (Rh-). К резус-фактору в норме нет агглютининов в плазме. Однако если резус-положительную кровь перелить резус-отрицательному реципиенту, то через некоторое время в организме последнего образуются соответствующие антитела. Повторное переливание резус-положительной крови приводит к ее биологическому гемолизу (резус-конфликт). Поэтому резус-отрицательным реципиентам можно переливать только резус-отрицательную кровь. Резус-конфликт может возникнугь при беременности, если кровь матери резус-отрицательная, а у плода – резус-положительная. Однако значительное поступление эритроцитов плода в организм матери наблюдается только в период родовой деятельности. Поэтому первая беременность обычно заканчивается благополучно (соответствующие антитела появляются в крови матери после родов).

Сердечно-сосудистая система

Доставка необходимых веществ клеткам и удаление от них продуктов жизнедеятельности, обеспечивается кровью, циркулирующей по замкнутой системе полостей и сосудов. Большой круг кровообращения начинается в левом желудочке сердца. Кровь из него проходит аорту, артерии и капилляры всех органов (там отдает кислород и питательные вещества, но забирает углекислоту и продукты метаболизма), а затем через вены и поступает в правое предсердие. Малый круг кровообращения начинается в правом желудочке сердца. Отсюда кровь направляется в легкие, там освобождается от избытка углекислоты, насыщается кислородом и поступает в левое предсердие.

ФИЗИОЛОГИЯ СЕРДЦА

Сердечная мышца обладает автоматией (способностью ритмически возбуждаться под влиянием возникающих в нем импульсов), возбудимостью (способностью приходить в состояние возбуждения под действием раздражителя), проводимостью (способностью проводить возбуждение) и сократимостью (способностью изменять свою форму и величину).

Клетки с наибольшей способностью к автоматии образуют проводящую систему сердца (рис. 12).

Рис. 12. Проводящая система сердца.

Ее основными частями являются: синоатриальный (в стенке правого предсердия) и атриовентрикулярный (на границе предсердий и желудочков) узлы, пучок Гиса, его правая и левая ножки и волокна Пуркинье (заканчиваются на мышечных клетках сердца).

В обычных условиях водителем ритма является синоатриальный узел. Частота разрядов в нем составляет около 70 в 1 минуту. В атриовентрикулярном узле (водитель ритма второго порядка) – 40-50 в 1 минуту. Он задает ритм, если не возбуждается импульсами из синоатриального узла. При отсутствии сигналов от вышерасположенных водителей ритма, более редкие импульсы вырабатываются в пучке Гисса, его ножках и волокнах Пуркинье.

Между клетками миокарда имеются контакты с низким электрическим сопротивлением и возбуждение, возникшее в одной клетке сердца, проводится на другие. Поэтому мышца сердца отвечает на раздражения в соответствии с законом «все или ничего» – всё сердце расслаблено или сокращается с максимальной силой. Поскольку скорость прохождения возбуждения через атриовентрикулярный узел самая низкая, предсердия успевают сократиться в то время, когда желудочки еще расслаблены.

Потенциал действия кардиомиоцитов начинается фазой деполяризации (обусловлена повышением проницаемости мембран для Na+), которая проявляется быстрым изменением мембранного потенциал от -90 мВ до +30 мВ. Затем начинается выход из клетки ионов калия и практически в это же время, в клетки устремляются ионы кальция. Это приводит к развитию плато. Быстрая реполяризация начинается только после закрытия кальциевых каналов. В конце периода реполяризации все ионы, при участии насосов, возвращаются на свои места и потенциал покоя восстанавливается.

Общая продолжительность потенциала действия в кардиомиоците в среднем составляет 300 мс и по длительности практически совпадает с перидом сокращения сердечной мышцы. Ее возбудимость в фазу абсолютной рефрактерности (в течение 270 мс) отсутствует, а в фазу относительной рефрактерности (длится до 30 мс) – снижена. Это исключает тетанус и сердечная мышца работает только в режиме одиночных сокращений.

Возникающее вокруг возбужденного сердца электрическое поле регистрируется на электрокардиограмме (ЭКГ). В нормальной электрокардиограмме различают пять зубцов: Р, Q, R, S, Т. Зубец Р обусловлен возбуждением предсердий. Зубец Q – межжелудочковой перегородки. Зубец R – оснований желудочков, зубец S – верхушки сердца. Зубец Т отражает процесс реполяризации желудочков. Интервал P-Q отражает время проведения возбуждения от предсердий к желудочкам.

Сердечный цикл состоит из систолы (сокращения) и диастолы (расслабления). При систоле предсердий, через предсердно-желудочковые отверстия кровь поступает в желудочки до момента закрытия атриовентрикулярных клапанов, вызванного начинающейся систолой желудочков. При всех закрытых клапанах объем желудочков не изменяется, а давление в их полостях растет. После того как в левом желудочке оно превысит аортальное давление, а в правом – давление в легочной артерии, полулунные клапаны открываются и начинается изгнание крови из желудочков. Диастола желудочков сначала приводит к закрытия полулунных клапанов, а после приближения давления в желудочках к 0 открываются атриовентрикулярные клапаны и начинается наполнение желудочков кровью из сокращающегося предсердия. Так начинается новый цикл сокращений.

Рис. 13. Фазы потенциала действия (а) и изменения возбудимости (б) клетки миокарда.

При работе сердца человеческое ухо, через фонендоскоп, может различать 2 тона. I – систолический (соответствует моменту закрытия атриовентрикулярных клапанов) и II – диастолический (закрытие полулунных клапанов).

За одну систолу сердце выбрасывает в аорту систолический объем (СО) крови. Умножив его на число сердечных сокращений (ЧСС) в 1 мин, получим минутный объем крови (МОК), т.е. количество крови, выбрасываемое сердцем за 1 мин.

СОСУДИСТАЯ СИСТЕМА

По функциям сосуды делят на:

  1. Амортизирующие (аорта и наиболее крупные артерии). Они сглаживают (амортизируют) подъем давления во время систолы и его падение во время диастолы.
  2. Резистивные или сосуды сопротивления (средние и мелкие артерии, артериолы и венулы). Они создают большое сопротивление кровотоку, регулируют кровенаполнение капилляров и предотвращают пульсирующее движение крови в них.
  3. Обменные (капилляры) обеспечиваютт обменные процессы между кровью и тканевой жидкостью.
  4. Емкостные (вены) – способны накапливать 70-80% всей крови.
  5. Артериовенозные анастомозы (шунты) соединяют артерии и вены, минуя капилляры.
  6. Сосуды возврата крови к сердцу – крупные вены.

Основным условием кровотока является создаваемый сердцем градиент давления в сосудистой системе. Кровь течет из области высокого давления в область низкого и преодолевает сопротивление, создаваемое трением частиц крови друг о друга (вязкостью) и о стенки сосуда. Количество крови, протекающей через поперечное сечение сосуда за единицу времени (объемная скорость кровотока) в связи с замкнутостью кровеносной системы во всех ее отделах одинакова. В отличие от объемной, линейная скорость (расстояние, пройденное частицей крови за единицу времени) изменяется. Самая большая линейная скорость кровотока в аорте – 50-60 см/с, а в капиллярах наименьшая – 0,5 мм/с. Время кругооборота крови (время, в течение которого частица крови пройдет оба круга кровообращения) равно 20-25 с.

Важнейшим гемодинамическим показателем является артериальное давление (АД). Во время систолы АД повышается (систолическое давление), при диастоле – снижается (диастолическое давление). Разницу систолического и диастолического давлений составляет пульсовое давление. АД зависит от работы сердца, количества циркулирующей крови, эластичности сосудов (потеря эластичности повышает АД), сопротивления сосудов току крови.

Физическая работа, прием пищи и эмоции повышают систолическое давление. Во время сна оно снижается. В вертикальном положении давление в сосудах, расположенных ниже сердца, больше чем давление в сосудах выше сердца.

Артериальный пульс – это ритмические колебания стенки артерии. Деятельность сердца создает пульсовую волну, которая распространяется по артериям со скоростью 8-12 м/с (значительно быстрее тока крови). Артериальный пульс отражает состояние сердечнососудистой системы и оценивается по частоте, ритму, быстроте, амплитуде, напряжению и форме. Пульс может быть ритмичным и аритмичным. Быстрота пульса отражает скорость изменения давления в артерии. Амплитуда пульса зависит от систолического объема сердца и эластичности сосудов: чем они эластичнее, тем меньше амплитуда пульса. Напряжение пульса определяется по сопротивлению стенки артерии нажиму. Различают твердый и мягкий пульс. При высоком АД пульс твердый, «проволочный».

Термином «микроциркуляция» обозначают ток крови и лимфы по мельчайшим сосудам, а также транспорт веществ между микрососудами и межклеточным пространством.

В состав микроциркуляторного русла входят: артериолы, прекапиллярные сфинктеры, капилляры, венулы и артериовенозные анастомозы. К кровеносным микрососудам примыкают лимфатические капилляры. Артериолы создают значительное сопротивление кровотоку, а изменения их просвета регулирует АД. Каждая артериола заканчивается сфинктером. От него зависит число открытых капилляров (в покое функционируют неболее трети из них). Все вместе взятые капилляры имеют огромную обменную поверхность. Это, в сочетании с низкой скоростью капиллярного кровотока способствует переходу веществ из сосудистого русла в ткани и обратно.

Венулы являются звеном емкостной части микроциркуляторного русла.

Артериовенозные анастомозы (их много в коже, легких, почках, печени) обеспечивают: перераспределение крови в работающем органе, поддержание постоянной температуры в определенном участке тела и увеличение притока крови к сердцу

В переходе веществ через сосудистую стенку участвуют: фильтрация, реабсорбция, диффузия и микропиноцитоз. Фильтрация и реабсорбция основаны на разности гидростатического и онкотического давлений в просвете капилляра и окружающих его тканях. Кровь поступает в капилляр под гидростатическим давлением около 30 мм рт.ст. В межклеточной жидкости оно составляет около 3 мм рт.ст. Онкотическое давление плазмы крови равно 25 мм рт.ст., а межклеточной жидкости – около 4 мм рт.ст. В артериальном конце капилляра способствует фильтрации гидростатическое давление (30 мм рт.ст. -3 мм рт.ст. = 27 мм рт.ст. – это фильтрационное давление). В венозной части капилляра уже онкотическое давление способствует переходу воды из межтканевого пространства в капилляр (25 мм рт.ст. – 4 мм рт.ст. = 21 мм рт.ст. – реабсорбционное давление). Около 10% вышедшей из крови воды идет на образование лимфы.

Движению крови в венах способствуют: градиент давления в венозной системе, остаточная сила сердца, присасывающее действие предсердий, отрицательное давление в плевральной полости (во время вдоха растет приток крови к полым венам), наличие в венах клапанов (препятствуют оттоку крови) и «мышечный насос» (сдавливание сокращающимися мышцами, проходящих в их толще вен). В периферических венах пульс отсутствует, но он есть в венах, расположенных около сердца и отражает изменения давления в правом предсердии.

Работа сердца регулируется внутри- и внесердечными (экстракардиальными) механизмами.

Внутриклеточные механизмы усиливают синтез сократительных белков в сердце. Кроме того, сила сердечных сокращений растет: при растяжении миокарда («закон сердца» или закон Франка-Старлинга), при увеличении частоты сокращений сердца (закон Боудича) и повышении давления в аорте (феномен Анрепа).

Эстракардиальные механизмы. Вегетативная рефлекторная дуга начинается от механорецепторов предсердий, реагирующих на тонус мускулатуры. От этих рецепторов идут афферентные пути в продолговатый и спинной мозг. В продолговатом мозге они связаны с парасимпатическим отделом сердечного центра (снижает возбудимость водителей ритма). Симпатические нервы (из грудных сегментов спинного мозга) повышают силу, возбудимость и проводимость сердечной мышцы, а также увеличивают частоту сокращений миокарда. Среди гуморальных факторов, положительное влияние на сердце отмечено у адреналина. Ионы кальция увеличивают возбудимость сердечной мышцы, а калия – снижают ее.

Механизмы регуляции сосудистого тонуса делят на местные (периферические) и центральные. Местные механизмы регулируют кровоток в отдельном участке организма. Даже денервированный сосуд сохраняет тонус своей стенки, который регулируется химическими веществами (продуктами метаболизма) и физическими факторами (например, растяжение сосуда). К важнейшим сосудосуживающим веществам относят – адреналин и норадреналин. Серотонин суживает сосуд в месте повреждения и тем самым облегчает остановку кровотечения. Гистамин (выделяется базофилами и тучными клетками при повреждении тканей) и брадикинин расширяют артериолы и венулы. Продукты метаболизма (например, молочная кислота, аденозин и СО2) оказывают местный сосудорасширяющий эффект.

Рефлекторная регуляция кровообращения направлена на поддержание определенного уровня артериального давления. Это обеспечивается ЦНС через вегетативные нервы (симпатические нервы повышают артериальное давление, а парасимпатические – снижают) и регуляцию выработки гормонов.

В верхних грудных сегментах спинного мозга (спинальный уровень) находится центр, стимулирующий сердечную деятельность, а в шейных – центр, повышающий тонус сосудов.

Бульбарный уровень. В продолговатом мозге находится главный (ингибирующий) центр регуляции сердечной деятельности и главный сосудодвигательный центр. Они непосредственно тормозят деятельность сердца и снижают артериальное давление.

Примерами рефлекторной регуляции деятельности сердца и тонуса сосудов могут служить реакции на раздражение барорецепторов в предсердии, дуге аорты и в каротидном синусе (место разделения сонной артерии на внутреннюю и наружную ветви). Возбуждение рецепторов переполненного кровью правого предсердия, стимулирует симпатические центры спинного мозга и сердце выбрасывает больше крови (предсердие освобождается от избытка крови). Повышение АД в аорте и каротидном синусе также возбуждает барорецепторы. От них сигналы идут в продолговатый мозг, которые через парасимпатические нервы тормозит работу сердцу и расширяют сосуды (давление уменьшается). При снижении артериального давления эти же ркцепторы и центры, но уже через спинной мозг и симпатические нервы – повышают АД. Корковый и гипоталамический уровни обеспечивают реакции сердца и сосудов преимущественно на внешние раздражения. Например, болевые раздражения кожи и события, вызывающие эмоции.

ЛИМФАТИЧЕСКАЯ СИСТЕМА

Лимфа образуется в области лимфатических капилляров всех тканей, за исключением кожи, ЦНС, паренхимы селезенки, хрящей, плаценты, хрусталика и оболочек глазного яблока. Через стенку лимфатического капилляра проходят фрагменты разрушенных клеток, белки и скапливающиеся в межклеточных пространствах низкомолекулярные вещества. Далее капилляры объединяются в сосуды, которые пронизывают лимфатические узлы. Затем очищенная в узлах лимфа поступает в крупные вены. Лимфатические сосуды, благодаря клапанам, собственным сокращениям и работе мышц прилегающих тканей, проводят лимфу в заданном направлении.

Лимфатическая система обеспечивает:

  1. Возврат белков, электролитов и воды из межклеточных пространств в кровь.
  2. Выведение из тканей в лимфатические узлы крупномолекулярных соединений и погибших клеток (резорбтивная функция).
  3. Задержка инородных частиц, микроорганизмов и опухолевых клетоки лимфоузлами (барьерная функция).
  4. Образование в лимфоузлах клеток, обеспечивающих иммунные реакции (иммунобиологическая функция).
Физиология дыхания

Основным источником энергии для человека является окисление органических веществ. Для этого, даже в покое, взрослый человек должен получать за 1 минуту не менее 250 мл молекулярного кислорода из окружающей среды и выделить образующийся при окислении избыток углекислого газа. Такой газообмен обеспечивается процессами дыхания.

Его делят на пять этапов:

  1. Внешнее дыхание.
  2. Обмен газов между легочными альвеолами и кровью.
  3. Транспорт газов кровью.
  4. Обмен О2 и СО2 между кровью и клетками.
  5. Клеточное дыхание.

Внешнее дыхание обеспечивает вентиляцию легочных альвеол атмосферным воздухом через воздухоносные пути (полость носа, гортань, трахея и бронхи). Они нагревают, увлажняют и очищают вдыхаемые газы

Внутригрудное пространство, в котором находятся легкие, герметично и с внешней средой не сообщается. Давление между поверхностями легких, диафрагмы и грудной клетки ниже атмосферного, а в легких – близко к атмосферному. Такая разница обусловлена эластической тягой легких (их постоянным стремлением уменьшить свой объем). Поэтому при нарушении герметичности грудной полости давление в ней становится равно атмосферному, и легкие спадаются. Их объем становится значительно меньше, чем при максимальном выдохе и внешнее дыхание прекращается.

Сокращение инспираторных (обеспечивающих вдох) мышц увеличивает объем грудной полости. Давление в ней становится еще меньше, и легкие расправляются. Это понижает давление в самих легких, что вызывает засасывание в них воздуха через воздухоносные пути. Так происходит вдох.

Выдох начинается с расслабления инспираторных мышц. Наблюдающееся при этом уменьшение объема грудной полости и рост давления в ней способствуют пассивному уменьшению легких и выходу воздуха в окружающую среду. Выдох завершается и начинается новый вдох.

При спокойном дыхании функцию инспираторных мышц выполняют только диафрагма и наружные межреберные мышцы, а выдох осуществляется пассивно (грудная клетка и легкие сами занимают то положение, в котором были до вдоха).

Форсированный вдох, дополнительно к названным инспираторным мышцам, обеспечивают грудные мышцы, а функцию экспираторных (обеспечивающих выдох) мышц выполняют внутренние межреберные мышцы и мышцы живота.

Количественной характеристикой легочной вентиляции служит минутный объем дыхания (МОД) – объем воздуха, проходящий через легкие за 1 минуту. Максимальная вентиляция легких (МВЛ) – объем воздуха, проходящего через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.

При спокойном дыхании через легкие проходит дыхательный объем (ДО), который у взрослого человека составляет 400-500 мл. Обычно за 1 минуту совершается 12-16 дыхательных циклов. После спокойного вдоха можно дополнительно вдохнуть резервный объем вдоха (РОвд) – который составляет 1,8-2,0 л. После спокойного выдоха человек может дополнительно выдохнуть резервный объем выдоха (РОвыд), который составляет, в среднем, 1,2-1,4 л. Объем воздуха, который остается в легких после максимального выдоха – остаточный объем (ОО) равен 1,2-1,5 л.

Различают следующие емкости легких: 1) общая емкость легких (ОЕЛ) – объем воздуха в легких после максимального вдоха; 2) жизненная емкость легких (ЖЕЛ) – объем воздуха, выдохнутого после максимального вдоха при максимальном выдохе. ЖЕЛ = ОЕЛ – ОО = ДО + РОвд + РОвыд. ЖЕЛ составляет у мужчин 3,5-5,0 л, у женщин – 3,0-4,0 л; 3) емкость вдоха (ЕВД) – сумма ДО и РОвд (в среднем 2,0-2,5 л); 4) функциональная остаточная емкость (ФОЕ) – объем воздуха в легких после спокойного выдоха – примерно 2500 мл.

Воздух, находящийся в воздухоносных путях не участвует в газообмене, и поэтому их объем называют вредным пространством. Во время вдоха объемом 500 мл в альвеолы поступает 350 мл атмосферного воздуха, а 150 мл задерживаются в мертвом пространстве.

Газообмен через альвеолярно-капиллярную мембрану обеспечивается диффузией растворенных газов через стенки альвеол и капилляров в сторону наименьшего парциального давления. Парциальное давление – та часть общего давления, которая приходится на данный газ в смеси с другими газами. Меньшее давление молекулярного кислорода в легочных капилляров, способствует его переходу из просвета альвеол в кровь. Для СО2 градиент направлен в обратную сторону, и его избыток выходит из крови в альвеолы.

Поскольку объем ФОЕ равен 2500 мл, а при спокойном вдохе в легкие поступает только 250-350 мл атмосферного воздуха, газовый состав в альвеолах существенно не изменяется. Поэтому интенсивность прохождения кислорода и двуокиси углерода через альвеоло-капиллярную мембрану практически не зависит от стадии дыхательного цикла.

Транспорт газов кровью обеспечивается в растворенном и связанном состояниях. Количество растворенного в крови кислорода не может обеспечить потребности млекопитающих даже при полном покое. Поэтому основная его часть переносится из капилляров малого круга кровообращения в связанном с гемоглобином состоянии. Один грамм гемоглобина может переносить до 1,36 мл кислорода, а в 1 литре крови содержится 140-150 г гемоглобина. Следовательно, в этом объеме, максимально возможное содержание связанного молекулярного кислорода составляет ≈200 мл (это кислородная емкость крови). Степень насыщения гемоглобина кислородом находится в прямой (но не пропорциональной) зависимости от создаваемого им парциального напряжения. В капиллярах малого круга оно составляет около 100 мм ртутного столба. Этого достаточно для насыщения гемоглобина кислородом на 95-97% от его кислородной емкости. В кровеносных капиллярах большого круга парциальное напряжение существенно ниже. Это приводит к переходу части связанного молекулярного кислорода в растворенное состояние, и он по градиенту парциального давления поступает в клетки тканей. При повышении температуры, а также концентрации водородных ионов и двуокиси углерода в крови, способность гемоглобина отдавать кислород растет. Эти эффекты имеет важное приспособительное значение. Температура и концентрация двуокиси углерода растут там, где происходит интенсивное окисление, а концентрация водородных ионов увеличивается при нехватке кислорода.

Таким образом, связанный молекулярный кислород необходим для переноса его основной массы кровью от легких к тканям, а растворенный – длядиффузии из альвеол в эритроциты и из эритроцитов к клеткам.

Двуокись углерода также транспортируется кровью в свободном и связанном состояниях. Одна часть данного газа включается в состав бикарбонатов, а другая срединяется с гемоглобином.

Дыхательная система должна обеспечивать соответствие интенсивности газообмен потребностям организма. Для этого в нескольких отделах ЦНС имеются структуры дыхательного центра. В продолговатом мозге есть центр вдоха (активирует инспираторные мышцы) и центр выдоха (увеличивает активность экспираторных мышц). Возбуждение одного из них, сопровождается торможением другого (реципрокные отношения). Эти центры управляют дыхательными мышцами через спинной мозг. В его шейных сегментах располагаются ядра диафрагмального нерва, а в грудных сегментах – нейронов, иннервирующих межреберные мышцы. В варолиевом мосту обнаружен пневмотаксический центр, участвующий в механизме смены вдоха и выдоха и регулирующий величину дыхательного объема. Гипоталамические ядра координируют связь дыхания с кровообращением. Кора больших полушарий осуществляет произвольную регуляцию дыхания.

Нейроны дыхательного центра тесно связаны с рецепторами дыхательных путей и легких, а также с рецепторами сосудистых рефлексогенных зон. Рецепторы растяжения легких возбуждаются при вдохе, тормозят его и начинается выдох. Рецепторы в трахее и бронхах возбуждаются при действии на них механических или химических раздражителей. Это вызывает частое, поверхностное дыхание и кашель. Раздражения слизистой оболочки носа вызывают чихание, способствующее удалению раздражителя.

Главным физиологическим стимулом дыхательных центров является двуокись углерода. Возрастание ее содержания в альвеолах на 0,2% вызывает удвоение МОД, а снижение кислорода, даже на 40%, не вызывает существенных изменений. Деятельность дыхательного центра зависит и от состава крови. Двуокись углерода, водородные ионы и умеренная гипоксия повышают возбудимость дыхательного центра через периферические (в каротидных синусах) и центральные (в продолговатом мозге) хеморецепторы.

Воздухоносные пути помимо газотранспортной выполняют ряд других функций. В них происходит согревание, увлажнение, очищение воздуха, регуляция его объема за счет способности мелких бронхов изменять свой просвет, а также рецепция вкусовых и обонятельных раздражителей. Клетки слизистой оболочки полости носа, трахеи и бронхов постоянно продуцируют секрет. Он увлажняет вдыхаемый воздух и выводит из дыхательных путей инородные частицы. Альвеолярные макрофаги фагоцитируют пылевые частицы, микроорганизмы и вирусы. В бронхиальной слизи содержатся также лизоцим, интерферон, протеазы, иммуноглобулин и другие компоненты. Легкие являются не только механическим фильтром, очищающим кровь от разрушенных клеток, сгустков фибрина и других частиц, но и метаболизируют их. Легочная ткань участвует в липидном и белковом обменах (синтезирует фосфолипиды и глицерин, а также окисляет жиры с выделением большого количества энергии). В легких синтезируются факторы свертывающей (протромбиназа) и противосвертывающей (гепарин) систем. Легкие также участвуют в водно-солевом обмене, удаляя за сутки воду.

Пищеварение

Для нормальной жизнедеятельности организму необходим пластический и энергетический материал. Он поступает в организм с пищей. Минеральные соли, вода и витамины усваиваются человеком в том виде, в котором они находятся в пище, а большинство органических веществ (белков, жиров и углеводов) сначала преобразуются в системе пищеварения. Пищеварение – совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, которые всасываются в кровь и усваиваются клетками организма. Эти процессы последовательно осуществляются во всех отделах пищеварительного тракта с участием печени, желчного пузыря и поджелудочной железы. В зависимости от происхождения используемых ферментов различают собственное, симбионтное и аутолитическое пищеварение. Собственное пищеварение осуществляется ферментами, синтезированными железами человека. Симбионтное – ферментами, синтезированными микроорганизмами. Аутолитическое – ферментами, содержащимися в пище.

Секреторная функция желудочно-кишечного тракта связана с выработкой пищеварительных соков: слюны, желудочного, поджелудочного, кишечного соков и желчи. Двигательная (моторная) функция заключается в жевании, глотании, перемешивании и передвижении пищи по пищеварительному тракту и удалении из организма непереваренных остатков.

Инкреторная (эндокринная) функция заключается в выработке гастроинтестинальных гормонов эндокринными клетками оболочки желудка, двенадцатиперстной кишки и поджелудочной железы. Данные гормоны регулируют секрецию, моторику, всасывание, трофику и высвобождения других гормонов определенными отделами пищеварительной системы, а также оказывают общие эффекты: измененяют обмен веществ, деятельность сердечно-сосудистой и эндокринной систем, пищевое поведение.

Экскреторная функция обеспечивает выделение из организма через желудочно-кишечный тракт продуктов обмена.

Центральные (рефлекторные) влияния на пищеварительный аппарат наиболее выражены в верхней его части, а гуморальная регуляция – в желудке, тонком кишке и поджелудочной железе, в желчеобразовании и желчевыведении. Нервная регуляция преимущественно осуществляется вегетативной нервной системы. Основными стимуляторами пищеварения являются холинергические нейроны, а тормозными – адренергические. В тонком кишечнике также выражена местная регуляция в ответ на механические и химические раздражения.

Пищеварение начинается в ротовой полости, где происходит оценка свойств пищи, а также предварительная ее механическая и химическая обработка. Здесь измельченная пища смачивается слюной и формируется пищевой комок.В полость рта впадают протоки слюнных желез. Одни из них вырабатывают серозный секрет (содержит много воды, белка и солей), другие – слизистый (богатый муцином), а часть желез являются смешанными. Основной фермент слюны амилаза частично расщепляет крахмал и гликоген. Белок муцин склеивает отдельные частицы пищи и формирует пищевой комок.

При поступлении пищи в ротовой полости раздражаются рецепторы, которые передают соответствующую информацию в центр слюноотделения (продолговатый мозг) и начинается выделение слюны. Через парасимпатические нервные волокна стимулируется выделение жидкой слюны с большими количествами неорганических веществ. Раздражение симпатических волокон вызывает отделение небольшого количества вязкой слюны, богатой органическими веществами. Вид и запах пищи, звуки, связанные с приготовлением пищи, а также другие раздражители, если они раньше совпадали с приемом пищи, вызывают условно-рефлекторное слюноотделение. При приеме воды слюна почти не отделяется. При попадании в ротовую полость отвергаемых веществ выделяется жидкая и обильная слюна.

Пищевой комок из ротовой полости проглатывается в желудок, где подвергается дальнейшей обработке.

Секреторная функция желудка обеспечивается находящихся в его стенках железами. Они вырабатываютпепсиногены, соляную кислоту и слизь (защищает стенку желудка от самопереваривания). Главный неорганический компонент желудочного сока – соляная кислота: способствует набуханию белков (это облегчает их расщепление ферментами), активирует пепсиногены, обеспечивает антибактериальное действие,способствует эвакуации содержимого желудка в 12-перстную кишку и усиливает секрецию сока поджелудочной железы. Основными органическими веществами желудочного сока являются протеолитические ферменты, главные среди них – пепсиногены. Под влиянием соляной кислоты они активируются (превращаются в пепсины) и частично расщепляют белки. В желудке продолжается гидролиз углеводов ферментами слюны, так как пищевой комок пропитывается желудочным соком постепенно.

Регуляцию желудочного сокоотделения делят на сложно-рефлекторную (мозговую), желудочную и кишечную фазы. Мозговая фаза включает условно-рефлекторный и безусловно-рефлекторный механизмы. При раздражении обонятельных, зрительных и слуховых рецепторов происходит условнорефлекторное отделение (запального или аппетитного) желудочного сока, а безусловно-рефлекторное сокоотделение начинается с момента попадания пищи в ротовую полость. Сок, выделяющийся в мозговую фазу, заранее готовит желудок к приему пищи. Желудочная фаза секреции наступает с момента попадания пищи в желудок, а кишечная фаза секреции начинается при переходе химуса из желудка в кишечник.

В тонкой кишке происходят основные процессы переваривания пищи. Ее начальным отделом является двенадцатиперстная кишка. Здесь в процессе пищеварения участвуют сок поджелудочной железы, кишечный сок и желчь.

Из неорганических веществ, в соке поджелудочной железы много бикарбонатов, благодаря которым pH сока равна 7,8-8,5. Панкреатический сок представлен также ферментами, переваривающими белки, жиры, углеводы и нуклеиновые кислоты. Амилаза, липаза и нуклеаза секретируются в активном состоянии; протеазы (трипсиноген, химотрипсиноген, прокарбоксипептидазы и др.) – в неактивном. Амилаза поджелудочной железы расщепляет полисахариды, нуклеазы – нуклеиновые кислоты. Панкреатическая липаза активируется солями желчных кислот и расщепляет липиды. Трипсиноген под влиянием энтерокиназы кишечного сока превращается в трипсин, который активирует другие ферменты.

Характер принятой пищи влияет на отделение сока поджелудочной железой. Так, пищевые продукты, усиливающие секрецию соляной кислоты в желудке (экстрактивные вещества мяса, овощей, продукты переваривания белков), стимулируют выделению поджелудочного сока, богатого бикарбонатами. Белки и жиры способствует выделению сока богатого ферментами.

Кишечный сок представляет собой секрет расположенных в оболочке тонкой кишки желез. Он имеет слабощелочную рН и обеспечивает интенсивное переваривание химуса.

Различают полостное и пристеночное пищеварение. Полостное пищеварение происходит в полости тонкой кишки. Пристеночное пищеварение происходит на поверхности микроворсинок, а образующиеся при этом продукты гидролиза всасываются в кровь и лимфу.

Из тонкой кишки химус переходит в толстую кишку. В толстой кишке происходят концентрирование химуса (путем всасывания воды), формирование каловых масс и удаление их из кишечника. Здесь также всасываются электролиты, водорастворимые витамины, жирные кислоты, углеводы. Железы слизистой оболочки толстой кишки выделяют небольшое количество слизи, а пищеварение в толстой кишке обеспечивается микрофлорой. Она осуществляет конечное разложение непереваренных веществ, расщепляет клетчатку, участвует в метаболизме липидов, желчных и жирных кислот, сбраживает углеводы до молочной и уксусной кислот, синтезирует витамины К и группы В, подавляет размножение патогенных микробов. Образующиеся при брожении кислые продукты препятствуют гниению, поэтому сбалансированное питание уравновешивает эти процессы.

Каловые массы удаляются при рефлекторном акте дефекации. Переполнение ампулы прямой кишки и повышение в ней давления раздражают механорецепторы, стимулирующие непроизвольный центр дефекации (в поясничном и крестцовом сегментах спинного мозга). Оттуда сигналы расслабляют внутренний сфинктер и усиливают сокращения прямой кишки. Произвольный акт дефекации осуществляется при участии коры больших полушарий, которая вызывает расслабление наружного (произвольного) сфинктера. Одновременно сокращается диафрагма и брюшные мышцы, что повышает внутрибрюшное давление и способствует дефекации.

Потребность в питательных веществах выражается в состоянии голода и побуждает к поиску и поеданию пищи. Нейроны, которые определяют пищевое поведение, образуют пищевой центр в коре больших полушарий, в лимбической системе, ретикулярной формации и гипоталамусе (здесь локализуется центр голода и центр насыщения). При возбуждении центра голода развиваются усиление поиска и потребления пищи, а стимуляция центра насыщения приводит к отказу от пищи.

Существует несколько теорий, объясняющих возникновение чувства голода. Глюкостатическая теория – ощущение голода связано со снижением уровня глюкозы в крови. Аминоацидостатическая – чувство голода создается понижением содержания в крови аминокислот. Липостатическая – пищевой центр возбуждается недостатком жирных кислот и триглицеридов в крови. Метаболическая – раздражителем пищевого центра являются продукты метаболизма цикла Кребса. Локальная теория – чувство голода возникает в результате импульсации от механорецепторов желудка при его «голодных» сокращениях.

Сенсорное насыщение возникает при раздражении рецепторов рта и желудка пищей. Истинное насыщение наступает только после поступления в кровь питательных веществ

Всасывание – это процесс транспорта веществ из желудочно-кишечного тракта в кровь и лимфу. Белки всасываются в виде аминокислот, углеводы – в виде моносахаров, жиры – в виде глицерина и жирных кислот. В полости рта всасывание незначительное, но некоторые вещества, например, лекарственные препараты (эфирные масла, нитроглицерин и др.) всасываются из ротовой полости быстро. В желудке всасываются некоторые аминокислоты, немного глюкозы, воды с растворенными минеральными солями и алкоголь. Основное всасывание происходит в тонком кишечнике. Всасывание в толстой кишке незначительно, там всасывается вода (необходимо для формирования кала), глюкоза, аминокислоты, минеральные соли, жирные кислоты и жирорастворимые витамины.

Жиры после их гидролиза под действием липазы на глицерин и жирные кислоты всасываются наиболее активно в двенадцатиперстной и тощей кишках. Жирные кислоты на поверхности энтероцита соединяются с желчными кислотами и образуется мицелла, которая проходит через мембрану энтероцита, а затем разрушается. Освобождающиеся при этом желчные кислоты всасываются в кровь и поступают в печень (где могут снова использоваться для образования желчи). Жирные кислоты в энтероците включаются в состав триглицеридов и фосфолипидов, а затем в составе хиломикронов выходят в лимфатические сосуды и окрашивают лимфу в белый цвет (млечный сок).

Печень (свое название получила от слова «печь») обычно имеет самую высокую температуру в организме человека. Пищеварительная функция печени заключается в секреции желчи. Она образуется непрерывно и вне пищеварения накапливается в желчном пузыре. Желчевыделение в двенадцатиперстную кишку начинается через 3-12 мин после начала приема пищи. Желчь содержит соли желчных кислот, желчные пигменты, холестерин, жирные кислоты, лецитин, муцин, мочевину, мочевую кислоту, незначительное количество ферментов и неорганические вещества. Не более 30% необходимого человеку холестерина (участвует в образовании желчных кислот, мицелл и хиломикронов) всасывается из кишечника в кровь. Около 80% его образуется в печени, 10% – в тонком кишечнике, остальное количество – в коже. Желчные кислоты способствуют эмульгированию и всасыванию в кровь жирных кислот и жирорастворимых витаминов (A, D, Е, К). Желчные пигменты (билирубин и биливердин) образуются из гемоглобина разрушающихся эритроцитов и придают желчи специфическую окраску. Они выделяются с желчью в двенадцатиперстную кишку, где превращаются в стеркобилин (придает калу соответствующую окраску), а после всасывания из кишечника в кровь, а затем в мочу – уробилин (придает моче желтый цвет).

Желчь: эмульгирует жиры, способствует образованию мицелл и хиломикронов, активирует липазу, стимулирует моторику тонкого кишечника, инактивирует пепсин в двенадцатиперстной кишке, оказывает бактерицидное и бактериостатическое действие, стимулирует желчеобразование и желчевыделение.

Парасимпатические нервы способствуют выделению желчи в двенадцатиперстную кишку, а симпатические тормозят опорожнение желчного пузыря. Рефлекторные изменения желчеобразования и желчевыделения наблюдаются при раздражении пищеварительного тракта, а также при условно-рефлекторных воздействиях. К гуморальным желчегонным факторам относятся сама желчь, гастрин, ХЦК-ПЗ и секретин. Такие пищевые продукты как желтки, молоко, жирная пища, хлеб, мясо, стимулируют желчевыделение. Вид, запах пищи, разговоры о ней, тоже вызывают подобные эффекты.

Печень также поддерживает нормальный уровень сахара в крови за счет процессов гликогенеза (превращения избытка глюкозы в гликоген), гликогенолиза (превращения депонированного гликогена в свободную глюкозу) и гликонеогенеза (образования глюкозы из аминокислот, молочной кислоты и некоторых других веществ). В печени происходит метаболизм протеинов, дезаминирование аминокислот, обезвреживание аммиака и превращение его в мочевину, которая затем выводится почками. Печень продуцирует большинство белков плазмы крови. Печень синтезирует жирные кислоты, триглицериды, фосфолипиды, холестерин, кетоновые тела, участвует в их метаболизме.

Печень – депо витаминов. Она непосредственно участвует в обмене и всасывании жирорастворимых витаминов A, D, Е. К. Каротин превращается в витамин А, который депонируется в печени. Витамин D и витамин В12, витамин В6, рибофлавин, аскорбиновую, фолиевую и пантотеновую кислоты также хранятся в печени. Кроме витаминов печень депонирует микроэлементы (железо, медь, марганец, кобальт, цинк, молибден и др.).

Дезинтоксикационная функция печени состоит в инактивации и выведении лекарственных препаратов, гормонов, вредных веществ (аммиака, индола, скатола, фенола, алкоголя). Биотрансформация лекарственных препаратов в печени.

Обмен веществ и энергии

Обмен у человека заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов в окружающую среду.

Согласно первому закону термодинамики энергия не исчезает и не возникает вновь, а лишь переходит из одной формы в другую. Второй закон термодинамики утверждает, что вся энергия, в конце концов, переходит в тепловую энергию и организация материи становится полностью неупорядоченной. Следовательно, живые существа должны получать энергию в доступной для них форме из окружающей среды и возвращать в нее такое же количество энергии в другой форме.

Главным источником энергии, а также необходимых для роста и обновления тканей веществ является пища. В ходе пищеварения ее компоненты всасываются в кровь, а затем используются клетками. В них осуществляются строго определенные последовательности реакций, называемые путями метаболизма. Метаболизм (обмен веществ и энергии) разделяют на анаболизм (ассимиляцию) и катаболизм (диссимиляцию). Анаболизм – это совокупность процессов синтеза. Он обеспечивает рост и обновление биологических структур. Катаболизм – это совокупность процессов расщепления молекул с использованием в дальнейшем части из них для биосинтеза и окисление другой части до конечных продуктов метаболизма. Это обеспечивает извлечение из органических молекул химической энергии, а анаболизм использует ее. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к разрушению тканевых структур. В детском возрасте должен преобладать анаболизм, а в старческом – катаболизм.

Превращение и использование энергии. Человек получает энергию из окружающей среды в виде энергии, заключенной в химических связях органических веществ. Получение энергии без участия кислорода называется анаэробным обменом, а с участием кислорода – аэробным обменом. Анаэробные процессы разрушают небольшую часть химических связей, а в присутствии кислорода разрушаются практически все связи. Поэтому аэробное окисление служит источником наибольших количеств энергии. Одна ее часть ее сразу же используется для выполнения определенных функций, другая выделяется в виде тепла, а третья накапливается в АТФ, которая является аккумулятором энергии и средством ее переноса к месту использования.

Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии – калория (кал). В Международной системе единиц (СИ) при этого используется джоуль (1 кал = 4,19 Дж). Запас энергии в пище можно определить в погруженной в воду, замкнутой камере. В ней сжигают взвешенную пробу, а по приросту температуры воды определяют количество выделившейся энергии. Окисление 1 г углеводов дает 17,17 кДж/г (4,1 ккал/г), 1 г жира дает 38,96 кДж (9,3 ккал). Только сжигание белка дает больше энергии (22,61 кДж/г), чем его окисление в организме. Разница приходится на энергию, которая расходуется на образование мочевины.

Теплопродукции является точным выражением величины обмена в организме человека. Для ее определения применяют прямые и непрямые методы. Прямая калориметрия заключается в непосредственном измерении теплопродукции. Для этого человек помещается в герметическую камеру, через которую по трубам протекает вода. По разности температур, поступающей и вытекающей жидкостей, вычисляют теплопродукцию. Непрямая калориметрия основана на том, что источником энергии в организме являются процессы, при которых потребляется кислород и выделяется углекислый газ. Наиболее распространен способ Дугласа – Холдейна, при котором собирают выдыхаемый человеком воздух в мешок из воздухонепроницаемой ткани. Затем определяют объем и газовый состав (содержание О2 и СО2) собранной смеси. По соотношению объемов выделенного углекислого газа и потребленного за то же время кислорода определяют дыхательный коэффициент (ДК), а по нему выбирают соответствующий калорический эквивалент кислорода (КЭК) – количество тепла, которое выделяется при окислении какого-либо вещества в литре поглощенного при этом кислорода. Умножая КЭК на объем потребленного кислорода получают величину теплопродукции.

Интенсивность энергетического обмена зависит от многих факторов. Поэтому для сравнения энергетических затрат у разных людей введено понятие основной обмен (ОО) – минимальные для бодрствующего организма затраты энергии в стандартных условиях: 1) при комфортной температуре (18-20 С0); 2) в положении лежа (обследуемый не должен спать); 3) в состоянии эмоционального покоя; 4) натощак. У мужчин ОО приблизительно на 10% больше чем у женщин.

Расход энергии у здорового человека складывается из основного обмена, рабочей прибавки (энергозатрат на выполнение той или иной работы) и специфического динамического действия пищи (затраты энергии на усвоение пищи). Чем интенсивнее выполняемая работа, тем выше суточные затраты энергии. Для людей, выполняющих легкую работу, нужно 2400-2600 ккал в сутки, а при выполнении тяжелой мышечной работы – 4000 ккал и выше.

Превращение разных веществ имеет свои особенности. Поэтому обмен каждой из групп химических соединений рассматривается отдельно.

Белки состоят из разных сочетаний 20 аминокислот. Десять из них (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) не синтезируются в организме и называются незаменимыми, остальные 10 аминокислот относятся к заменимым. Поэтому полноценными белками в пище являются те, которые содержат необходимые количества незаменимых аминокислот.

Часть аминокислот окисляются и служат источником энергии. Образующийся при этом аммиак превращается в мочевину, которая выводится из организма.

Белки в организме человека непрерывно обновляются и не депонируются. Поэтому потребность в белке определяется тем его минимальным количеством, которое уравновешивает потери. Человеку рекомендуется принимать с пищей 85-90 г белка в сутки.

Липиды (преимущественно сложные эфиры глицерина и жирных кислот) играют энергетическую и пластическую роль. Их запасы у человека в среднем составляют 10-20% от массы тела (около половины в подкожной жировой клетчатке). В условиях покоя после приема пищи липиды накапливаются. В состоянии голода, при переохлаждении, физической или психоэмоциональной нагрузке происходит интенсивное расщепление запасенных жиров. Только незаменимые жирные кислоты (линолевая, линоленовая и арахидоновая) не синтезируются в организме. Их недостаток задерживает рост и нарушает многие функции. Поэтому биологическая ценность пищи определяется и по наличию в ней незаменимых жирных кислот.

Углеводы поступают в организм человека, главным образом, в виде крахмала и гликогена. В желудочно-кишечном тракте они расщепляются до моносахаридов, которые всасываются в кровь и используются для синтеза аминокислот и полисахаридов, а также в качестве источника энергии. При достаточном поступлении глюкоза превращается в резервную форму ее хранения – гликоген. После истощения запасов гликогена усиливается образование глюкозы из других веществ (гликонеогенез). Избыток углеводов стимулирует отложение жира. Поэтому желающим похудеть, рекомендуют диеты без сладкого.

Обмен воды и минеральных веществ. Человек на 70-75% состоит из воды. Водный баланс в организме поддерживается за счет равенства объемов потерь воды и ее поступления в организм. Суточная потребность в воде (в среднем 2400 мл) удовлетворяется за счет поступления воды при питье (1200 мл), с пищей (900 мл) и воды, образующейся в организме в ходе обменных процессов (300 мл). Такое же количество воды выводится в составе мочи (1400 мл), кала (100 мл), посредством испарения с поверхности кожи и дыхательных путей (900 мл). Недостаточное поступление в организм воды или ее избыточная потеря приводят к дегидратации. Недостаток в организме воды в объеме 20% от массы тела ведет к смерти. Избыточное поступление воды в организм или снижение ее выведения из организма, приводят к водной интоксикации. Обмен воды и минеральных ионов в организме тесно взаимосвязаны, что обусловлено поддержанием постоянного осмотического давления во внеклеточной среде и клетках. Осуществление ряда физиологических процессов (возбуждения, синаптической передачи, сокращения мышцы) невозможно без поддержания в тканях определенных концентраций Na+, K+, Са2+ и других ионов. Все они должны поступать в организм с пищей.

Ценность пищи определяется содержанием белков, жиров, углеводов, витаминов, минеральных солей, органических кислот, воды, ароматических и вкусовых веществ. Необходимо учитывать также перевариваемость и усвояемость пищи.

Согласно теории сбалансированного питания (А.А.Покровский) – полноценное питание должно соответствовать физиологическим потребностям по количеству и соотношению всех компонентов в пище. Она должна восполнять все энергетические затраты человека. В рационе должны быть сбалансированы белки, жиры и углеводы. Для человека, среднее соотношение их энергетической ценности должно составлять – 15:30:55%. Должны быть сбалансированы белки с незаменимыми и заменимыми аминокислотами, жиры с разной насыщенностью жирных кислот, углеводы с разным числом мономеров и наличием балластных веществ (целлюлоза, пектин и др.).

Согласно теории адекватного питания (А.М.Уголев), важно соответствие набора пищевых веществ ферментам пищеварительной системы. В этой теории считается, что первичный поток питательных веществ формируется в результате переваривания и всасывания пищи, но кроме него есть вторичный поток, который образуется в результате деятельности микрофлоры кишечника. С ее участием образуются вещества, обладающие энергетической и пластической ценностью, а также влияющие на многие физиологические процессы (иммунные, защитные, поведенческие).

Принципы составления рациона (суточного состава продуктов):

  1. Калорийность питательных веществ должна соответствовать энергетическим затратам организма. Белки, жиры и углеводы, исходя из их энергетической ценности, взаимозаменяемы, но замена возможна только на короткое время, так как они выполняют и пластическую функцию.
  2. Соотношение количеств белков, жиров и углеводов должно быть 1:1,2:4.
  3. Должны полностью удовлетворяться потребности организма в витаминах, минеральных солях, воде и незаменимых аминокислотах.
  4. Не менее одной трети суточной нормы белков и жиров должно поступать в организм человека в виде продуктов животного происхождения.
ТЕРМОРЕГУЛЯЦИЯ

У человека выработались физиологические механизмы терморегуляции, способные сохранять одинаковую температуру тела, несмотря на ее изменения в окружающей среде. Живой организм постоянно вырабатывает тепло. Его источниками являются: обмен веществ (химический или несократительный термогенез) и работа мышц (сократительный термогенез).

Согласно законам термодинамики постоянная температура тела поддерживается при равенстве теплопродукции и теплоотдачи. Если теплопродукция меньше теплоотдачи, возникает переохлаждение. Температура тела растет, если теплопродукция превышает теплоотдачу.

Для выведения тепла используются: излучение, теплопроведение, конвекция и испарение. Излучение – выведение тепла в виде электромагнитных волн инфракрасного диапазона. Интенсивность этого процесса пропорциональна площади контакта кожи с воздухом меньшей температуры и разности этих температур. Теплопроведение – отдача тепла при контакте тела с другими объектами. Эффективность этого механизма пропорционально разнице температур контактирующих тел, площади и времени контакта, а также теплопроводности. Сухой воздух и жировая ткань являются теплоизоляторами, а влажный воздух и вода имеют высокую теплопроводность. Поэтому пребывание при низкой температуре в среде с высокой влажностью усиливает теплопотери. Конвекция осуществляется путем переноса тепла движущимися воздухом или жидкостью. Для этого требуется постоянное обтекание поверхности тела средой с более низкой температурой. Контактирующая с кожей среда нагревается, снижает свою плотность, поднимается и замещается более холодной (в невесомости естественная конвекция невозможна). Если внешняя температура превышает температуру кожи, то единственным способом рассеяния тепла остается испарение влаги с покровов тела (на испарение 1 г воды затрачивается 0,58 ккал). Оно замедляется по мере увеличения влажности окружающего воздуха, а при 100% влажности – прекращается. При умеренной влажности воздуха, не ощущаемое человеком испарение с покровов тела происходит постоянно. Однако, оно не велико и не приводит к потере значимой части тепла. При угрозе перегревания симпатическая нервная система стимулирует потоотделение настолько, что испарение с кожи становится ощутимым и резко возрастает его вклад в теплоотдачу.

Поскольку основная часть тепла выводится из организма через кожу, ее температура, непостоянна. Она зависит от интенсивности местного кровообращения и состояния окружающей среды, а терморегуляция в организме человека поддерживает постоянство температуры не кожи, а «ядра тела». К нему относят ткани, расположенные на глубине 1 см от поверхности и более.

Информация о температуре покровов тела и ядра воспринимается терморецепторами в коже, сосудах, внутренних органах и ЦНС.

От кожных терморецепторов информация идет в кору больших полушарий и гипоталамус. Они обеспечивают температурные ощущения (холодно, жарко) и поведение, направленное на поиск более комфортной среды.

Интеграция информации, связанной с температурой ядра осуществляется гипоталамусом. При отклонении температуры от необходимой величины, он воздействует на теплоотдачу и теплопродукцию.

Различают поведенческие и вегетативные механизмы поддержания температурного гомеостаза. В первую очередь, гипоталамус стремится поддерживать температуру ядра, изменяя теплоотдачу. Для этого, при угрозе переохлаждения, снижается приток крови к коже и потоотделение. Если перечисленные реакции не достаточны, гипоталамус активизирует сократительный и несократительный термогенезы. Сократительный термогенез разделяют на произвольный и непроизвольный. В первом случае, дополнительным источником тепла становится повышение двигательной активности человека. При непроизвольном термогенезе, наблюдается последовательное увеличение тонуса мышц подбородка, шеи, верхнего плечевого пояса, туловища и сгибателей конечностей. Это повышает сократительную активность отдельных мышечных волокон, что может повысить общую теплопродукцию на 20-40% и, одновременно, способствует принятию позы, уменьшающей площадь контакта тела с внешней средой (снижается теплоотдача). Дальнейшее охлаждение ядра тела вызывает холодовую мышечную дрожь. При ней минимальная мышечная работа сопровождается освобождением значительного количества тепла. Не сократительный термогенез обеспечивается за счет активации окисления органических веществ в тканях.

Повышение температуры вызывает, преимущественно, усиления теплоотдачи. Для этого расширяются сосуды кожи, усиливается теплоизлучение, теплопроведение и конвекция с поверхности тела. Если температура тела продолжает увеличиваться, резко усиливается потоотделение.

Для большинства людей поведенческая адаптация к температуре среды обитания проявляется использованием соответствующей одежды и созданием необходимого микроклимата в жилище.

В условиях продолжительного действия холода может возникнуть толерантная адаптация. При ней порог развития дрожи и интенсификации обменных процессов смещается к более низким значениям температуры. Например, аборигены Австралии проводят целую ночь почти раздетые при температуре, близкой к нулю, без развития дрожи. В то же время, у жителей Севера выработалась метаболическая адаптация: интенсивность обмена стала выше.

ВЫДЕЛЕНИЕ

В процессе жизнедеятельности организм должен своевременно освобождаться от образующихся в нем конечных продуктов обмена, токсичных и чужеродных веществ, а также от избытка воды и солей. В этом участвуют легкие, кожа, печень и желудочно-кишечный тракт, а главным выделительным органом являются почки. Именно они удаляют из организма основную массу выделяемых неорганических веществ, поддерживают водный баланс (за счет изменения объема выводимой мочи) и нормальное осмотическое давление во внутренней среде (путем изменения количества выводимых осмотически активных веществ: солей, мочевины, глюкозы), регулируют ее ионный состав и рН (путем избирательного изменения экскреции ионов).

Функциональной единицей почки является нефрон. (Рис.14) Он начинается с мальпигиева клубочка, образованного кровеносными капиллярами.

Рис. 14. 1 – капсула Шумлянского-Боумена; 2 – проксимальный извитый каналец; 3 – собирательная трубочка, 4 – петля Генле; 5 – дистальный извитый каналец; 6 – Мальпигиев клубочек; 7 – выносящая артериола; 8 – приносящая артериола.Стрелками обозначено направление движения жидкостей (крови в кровеносных сосудах и мочи в канальцах)

Снаружи клубочек покрыт капсулой Шумлянского – Боумена. Между ее листками имеется полость, переходящая через просвет всех канальцев в собирательные трубочки, которые, в конечном итоге, объединяются в мочеточники, впадающие в мочевой пузырь.

В ходе клубочковой фильтрации, из крови в капсулу Шумлянского – Боумена поступает жидкость, названная первичной мочой. Она состоит из всех низкомолекулярных веществ плазмы крови, но не содержит клеток и белков.

Способствует фильтрации гидростатическое давление крови в капиллярах клубочков. Оно выше, чем в капиллярах других тканей благодаря тому, что диаметр приносящей артериолы больше, чем выносящей.

За сутки, у человека образуется 150-180 л первичной мочи, а объем конечной мочи обычно не превышает 1,5 л. Остальная ее часть возвращается (реабсорбируется) в кровь. Канальцевая реабсорбция сохраняет организму необходимые количества, прошедших клубочковый фильтр, веществ. Реабсорбция может быть пассивной (без затрат энергии) и активной (с затратами энергии). Пассивно реабсорбируется вода, хлор, мочевина. Активно переносятся ионы натрия, глюкоза и аминокислоты. В проксимальных извитых канальцах практически полностью реабсорбируются аминокислоты, моносахара, витамины и микроэлементы, а в других отделах нефрона – только неорганические вещества. Вода реабсорбируется канальцами по осмотическому градиенту (он, в основном, создается натрием). Большое значение в концентрировании мочи, за счет реабсорбции натрия и воды, имеет петля Генле.

Канальцевая секреция обеспечивает преимущественно активный транспорт веществ из крови в просвет канальцев. Она позволяет экскретировать некоторые ионы (например, калий), органические кислоты (мочевую кислоту) и чужеродные высокомолекулярные вещества (например, антибиотики).

Вегетативная нервная система регулирует все механизмы мочеобразования. Симпатические нервы увеличивают реабсорбцию натрия и воды, а сужая приносящие артериолы, уменьшают фильтрацию. В то же время, они увеличивают фильтрацию при действии на выносящие артериолы. Парасимпатические нервы усиливают реабсорбцию глюкозы и секрецию кислот.

Ведущая роль в регуляции деятельности почек принадлежит гормонам. Основными их представителями являются АДГ и альдостерон. АДГ ускоряет реабсорбцию воды. При его недостаточной секреции развивается несахарный диабет с выделением большого объема (до 25 л в сутки) конечной мочи. Альдостерон увеличивает реабсорбцию ионов натрия, а также секрецию калия и водорода.

По мере заполнения почечных лоханок, происходит рефлекторное сокращение их мускулатуры и моча по мочеточникам поступает в мочевой пузырь. По мере растяжения раздражаются механо- рецепторы в его стенке. В ответ на это центр непроизвольного мочеиспускания (крестцовый отдел спинного мозга) вызывает мочеиспускание. У взрослого человека, спинальный центр контролируется корой, что делает процесс мочеиспускания произвольным.

Физиология анализаторов

Ощущения возникают с помощью анализаторов, которые состоят из воспринимающего аппарата (рецепторов), а также проводниковой и центральной частей.

Для каждого органа чувств характерна наибольшая чувствительность к к определенным (адекватным) раздражениям. Именно они дают соответствующее ощущение при минимальной энергии воздействия на рецептор. Он преобразует воспринятые сигналы в биопотенциалы, которыми кодируют воспринятую информацию, изменяя частоту ПД и продолжительность интервалов между сериями импульсов. По определенным проводниковым путям, информация проходит в определенные зоны коры. Здесь она анализируется путем выделения наиболее значимых для организма параметров и осуществления взаимодействия различных анализаторов. Это обеспечивает правильную расшифровку сигнала (ощущение) и формирование ответных реакций.

ЧАСТНАЯ ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ

Зрительный анализатор обеспечивает восприятие электромагнитных излучений с длиной волны от 400 до 700 ммк. Он служит источником 80-90% получаемой человеком информации об окружающем мире. Периферическая часть зрительного анализатора – глазное яблоко. Радужка глаза содержит пигментные клетки, определяющие цвет глаз и отверстие (зрачок) для проникающих в глаз лучей света. При ярком свете диаметр зрачка минимальный, в темноте – максимальный. На задней, внутренней, поверхности глазного яблока представлена сетчатка с фоторецепторами (палочками и колбочками), контактирующими с отростками нейронов проводящих зрительных путей. Палочки обеспечивают черно-белое, а колбочки – цветовое зрение (способность зрительного анализатора различать изменения светового диапазона от фиолетового цвета до красного). Наиболее признана трехкомпонентная теория цветоощущения Г. Гельмгольца. Согласно ей в сетчатке имеются колбочки, воспринимающие только красный, зеленый и сине-фиолетовый цвета. Различные сочетания возбуждения колбочек приводят к ощущению других цветов, а равномерное возбуждение всех видов колбочек дает ощущение белого цвета. Черный цвет ощущается в случае, если колбочки и палочки не возбуждены.

Свет вызывает распад зрительных пигментов в фоторецепторах. Например, родопсин (находится в палочках) разрушается до альдегида витамина А и белка опсина, который вызывает развитие рецепторного потенциала. Для нового ответа рецептора на световой сигнал, необходим ресинтез родопсина в присутствии другого изомера витамина А, поэтому гиповитаминоз А нарушает сумеречное зрение («куриная слепота»). Палочки могут реагировать даже на один квант света, а колбочка – не менее чем на сто квантов. Поэтому палочки обеспечивают и сумеречное зрение, а колбочки различают цвета объектов только при достаточном освещении.

На уровне сетчатки по световым сигналам определяются такие качества объекта, как освещенность, цвет, форма и движение. Зрительный нерв идет от глазного яблока в кору больших полушарий (затылочная доля). По пути к ней (в подкорковых структурах) информация подвергается более сложной переработке и начинается взаимодействие обоих глаз, а в зрительной коре происходит основной анализ информации.

Слуховой анализатор воспринимает как звук колебания воздуха с разной частотой и силой.

Ушная раковина улавливает звуковые колебания и направляет их в наружный слуховой проход, который проводит звуковые колебания к барабанной перепонке. Перечисленные отделы (наружное ухо) также защищает другие части органа слуха от неблагоприятных влияний внешней среды. Барабанная перепонка передает звуковые колебания на соединенные между собой косточки (молоточек, наковальня и стремечко) в среднем ухе. Они увеличивают силу колебаний в области овального окна (вход во внутреннее ухо). Для нормальных колебаний барабанной перепонки, давление в среднем ухе должно быть близко к атмосферному. Для этого среднее ухо соединено с носоглоткой. Воспринимают звуковые колебания волосковые клетки кортиева органа улитки (внутреннее ухо). При поступлении в нее звуковых колебаний, волоски рецепторных клеток сгибаются и возникает их возбуждение. У основания улитки воспринимаются звуки высокой, а у вершины – низкой частоты.

Вестибулярный анализатор необходим для ориентации в пространстве и является органом равновесия. Он воспринимает информацию о положении и перемещениях всего тела и головы. Периферический отдел (вестибулярный аппарат) находится в височной кости и состоит из заполненных эндолимфой полукружных каналов и преддверия. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Преддверие состоит из мешочка и маточки. В каждом мешочке имеются возвышения с волосковыми рецепторными клетками, покрытыми желеобразной массой. Она перемещается и стимулирует рецепторы при ускорении или замедлении прямолинейного движения, а также наклоне головы и тела, тряске и качке. Раздражителем рецепторов полукружных каналов является вращение и угловые ускорения.

От рецепторов идут проводящие пути через подкорковые структуры (ствол мозга) в кору головного мозга (височная доля).

Обонятельный анализатор воспринимает и анализирует пахучие вещества во внешней среде и принимаемой пище. Обонятельные рецепторы расположены в носовых ходах. От рецепторных клеток отходят реснички, погруженные в слизь. В ней содержащиеся во вдыхаемом воздухе пахучие вещества растворяются и захватываются специальными белками в мембране ресничек рецептора – возникает рецепторный потенциал. Аксоны рецепторных клеток идут к обонятельной луковице и другим структурам мозга. Центральный отдел анализатора находится в области гиппокампа.

Многообразие обонятельных ощущений связано со смешением семи первичных запахов: камфароподобного, цветочного, мускусного, мятного, эфирного, гнилостного и острого.

Вкусовой анализатор обеспечивает восприятие четырех «первичных» вкусовых ощущений: сладкого, кислого, соленого и горького. Большинство вкусовых рецепторов расположено на языке. Кончик языка воспринимает в основном сладкий вкус, корень – горький, средняя часть – кислый, боковые части языка – соленый и кислый. Длительное действие веществ на вкусовые рецепторы приводит к адаптации к данному ощущению.

Болевая чувствительность дополняет каждое из пяти основных чувств (зрение, слух, вкус, обоняние и осязание). Боль неприятна, приучает к осторожности и сообщает о повреждениях. По определению П.К.Анохина, «боль мобилизует организм для его защиты от вредоносных факторов».

Основной причиной болевых ощущений является повреждение тканей внешними факторами (при этом как правило нарушается целостность кожи) и гипоксией (улавливается рецепторами того органа, в котором не хватает кислорода). Поэтому боль называют ноцицепцией (чувством повреждения). Болевые (ноцицептивные) рефлексы доминируют над другими и вызывают: повышение мышечной активности и тонуса мускулатуры, а также принятие мер по устранению повреждения; активация симпатоадреналовой системы, трофики и кислородного обеспечения тканей; увеличение легочной вентиляции и артериального давления; расширение зрачков

Повреждающие стимулы воспринимаются свободными немиелинизированными нервными окончаниями – механоно- и хемоноцицепторами. Возбуждение механоноцицепторов вызывает острую боль и быстро передается в ЦНС. Раздражение хемоноцицепторов (например, гистамином, ионами калия и водорода) вызывает ощущение тупой боли.

Вся болевая информация поступает в лимбическую систему (обусловливает вегетативный и эмоциональный компоненты боли) и кору больших полушарий (формирует мотивацию избавления от боли и отвечают за ее психогенную окраску).

Высшая нервная деятельность

Высшая нервная деятельность (ВНД) – это совокупность психических функций, которые обеспечивают сложные индивидуальные формы адекватного поведения в изменяющихся природных и социальных условиях. ВНД реализуется за счет влияния коры на другие структуры ЦНС.

Первым сообщил о рефлекторном принципе деятельности высших отделов мозга И.М.Сеченов, а И.П.Павлов разделил рефлексы на безусловные и условные.

Безусловные рефлексы – передаются по наследству и закономерно возникают в ответ на определенное раздражение, а условные рефлексы вырабатываются в течение индивидуальной жизни на базе безусловных.

Именно условные рефлексы обеспечивают совершенное приспособление человека к меняющимся условиям обитания и являются функциональной единицей ВНД. Они могут возникнуть на всю жизнь, а если станут не нужны – то исчезнуть.

Для выработки условных рефлексов необходимы:

выбор такого безусловного раздражителя (пищевого, болевого и др.) раздражителя, для которого у данного животного есть выраженная мотивация (например, при выработке слюноотделительного рефлекса животное должно быть голодным);

применение условного раздражителя (свет, звук, вид пищи и т.д.), который привлекает внимание но, по возможности, не вызывает оборонительной реакции;

отсутствие посторонних раздражителей;

использование здорового животного;

многократное сочетание условного и безусловного раздражителей;

применение условного раздражения до безусловного

Условные рефлексы делятся на натуральные и искусственные. Натуральные условные рефлексы вырабатываются на агенты, которые в естественных условиях действуют вместе с раздражителем, вызывающим безусловный рефлекс (например, вид пищи, ее запах и т.д.). Искусственные условные рефлексы вырабатываются на агенты, в норме не связанные с безусловным раздражителем (например, слюноотделительный рефлекс на звонок).

В реальных условиях, условный рефлекс не всегда вырабатывается на основе собственного опыта. Определенное значение имеют и подражательные рефлексы. Они передаются при наблюдении за действиями других (так ребенок учится у взрослых)

Физиологической основой для возникновения условных рефлексов служит образование временных связей между нейронами высших отделов ЦНС.

Если выработать условный пищевой рефлекс, например, на свет, то это рефлекс первого порядка. На его базе можно выработать условный рефлекс второго порядка, для этого дополнительно применяют новый, предшествующий сигнал, например звук, подкрепляя его условным раздражителем первого порядка. В результате нескольких сочетаний звука и света звуковой раздражитель также вызывает слюноотделение. Так возникает условный рефлекс второго порядка. У некоторых собак можно выработать условные рефлексы и третьего порядка, у обезьян – до шестого порядка, а у человека возможности почти не ограничены.

Если многократно повторять осуществление разных условных рефлексов в определенном порядке с небольшими временными интервалами, то рефлексы объединяются в динамический стереотип, на котором основаны многие наши навыки (например, способность писать). Благодаря этому возникают устойчивые формы поведения в обществе, в оценке текущих событий и реагировании на них. Динамический стереотип освобождает кору от решения стандартных задач и облегчает выполнение более сложных.

Для приспособления и адекватного поведения необходимы не только способность к выработке условных рефлексов и их сохранение, но и возможность устранения ставших не нужными условных рефлексов. Это обеспечивают процессы безусловного и условного коркового торможения.

Безусловное торможение условных рефлексов (не нуждается в выработке) может быть внешним и запредельным. Внешнее торможение вызывает новый раздражитель, формирующий ориентировочный рефлекс. Биологическое значение внешнего торможения состоит в том, что, затормаживая текущую деятельность, оно позволяет переключить организм на определение значимости нового воздействия. При повторении постороннего раздражителя ориентировочный рефлекс на него угасает и уже не вызывает торможения. Если же посторонний раздражитель содержит биологически важную информацию, то он всякий раз тормозит условные рефлексы.

Таким образом, внешнее торможение обеспечивает условия для важного в данный момент ориентировочного рефлекса и способствует срочной оценке нового раздражителя.

Запредельное (охранительное) торможение возникает при чрезмерной силе условного раздражителя. Оно препятствует истощению нейронов.

Условное торможение делят на угасательное, дифференцировочное, условный тормоз и запаздывающее. Угасательное торможение развивается если условный раздражитель перестает подкрепляться безусловным. При первом предъявлении условного раздражителя без подкрепления условная реакция проявляется как обычно. На последующие условные раздражители без подкрепления условно-рефлекторная реакция постепенно угасает. Дифференцировочное торможение вырабатывается на раздражители, близкие по характеристике к условному раздражителю. С помощью этого торможения из сходных раздражителей выделяется тот, который подкрепляется безусловным раздражителем. Например, на звук с частотой 2 герца у собаки выделяется слюна. Если теперь этому животному в качестве раздражителя предъявить звук с частотой 1 герц, но не подкреплять его, то в первых опытах и на него будет выделяться слюна, но через некоторое время реакция исчезнет. В то же время, на звук с частотой 2 герца слюноотделение продолжает усиливаться. Условный тормоз возникает в том случае, если положительный условный раздражитель подкрепляется безусловным, а комбинация из условного и индифферентного раздражителей не подкрепляется. Например, условный раздражитель свет подкрепляется безусловным раздражителем, а комбинация свет и звонок не подкрепляется. Запаздывающее торможение характеризуется тем, что при увеличении интервала между началом действия условного раздражителя и моментом подкрепления (до 2-3 мин) условная реакция все более запаздывает и начинает возникать непосредственно перед предъявлением подкрепления.

Таким образом, условное торможение дает возможность организму избавиться от лишних и несвоевременных реакций.

Кора головного мозга обеспечивает анализ и синтез сигналов, поступающих из окружающей и внутренней среды организма. Аналитическая деятельность коры головного мозга заключается в дифференцировании по характеру, интенсивности и биологической значимости доходящих до нее сигналов. Синтетическая деятельность проявляется объединением информации обработанной различными зонами коры.

Нервные процессы у высших животных и человека оценивают по силе, уравновешенности и подвижности. Учет перечисленных свойств позволил И.П.Павлову разделить людей и высших животных на следующие четыре основных типа ВНД (необходимо учитывать, что «чистые» типы ВНД встречаются реже промежуточных):

  • слабый;
  • сильный, неуравновешенный (безудержный);
  • сильный, уравновешенный, подвижный;
  • сильный, уравновешенный, инертный.

У представителей слабого типа отмечается низкая выраженность процессов торможения и возбуждения. Такие люди не могут выдерживать сильные и длительные раздражители, но обладают самой высокой чувствительностью к раздражителям, и в этом состоит известное преимущество данного типа ВНД над другими.

Для всех сильных типов характерна высокая выраженность процессов возбуждения и торможения. В то же время, у людей с сильным, неуравновешенным типом ВНД, даже при отсутствии раздражений, процессы возбуждения преобладают над процессами торможения.

У сильных уравновешенных подвижных людей процессы торможения и возбуждения хорошо выражены, но в состоянии покоя, они уравновешены. При раздражениях это равновесие быстро нарушается.

У сильного уравновешенного инертного типа нервные процессы отличаются малой подвижностью. Представители этого типа внешне всегда спокойны, ровны, трудно возбудимы.

В повседневной жизни человека, типы ВНД проявляются соответствующими темпераментами. Гиппократом (еще в 5 веке до н.э.) разделил людей на меланхоликов, холериков, сангвиников и флегматиков. Люди со слабым типом, по своему темпераменту, являются меланхоликами, с сильным неуравновешенным – холериками, с сильным уравновешенным подвижным – сангвиниками, а с сильным уравновешенным инертным – флегматиками.

Меланхолик склонен впадать в угнетенное, подавленное настроение с глубокими и длительными внутренними переживаниями. Сангвиник подвижен, возбудим и эмоционален (но глубина и сила эмоций не велика). Флегматик медлителен, слабо выражает чувства и эмоции. Холерик отличается горячностью, быстро возникающими эмоциями с выразительными движениями (жестами, мимикой), порывистостью поступков.

Знание особенностей влияния прирожденной организации нервной системы на психическую деятельность человека, необходимо во всех сферах его жизни. Например, темперамент может влиять на качество такой работы человека, которая связана с точными движениями и неравномерным темпом, а также на способность к повышенной работоспособности и длительной концентрации внимания.

Типы ВНД и темпераменты наследуются, а особенности формирующегося на их основе характера приобретаются в индивидуальной жизни.

Высочайший уровень развития мозга у людей, позволяет выделять присущие только им черты на основании оценки соотношения двух сигнальных систем.

Первая сигнальная система (непосредственное восприятие сигналов от рецепторов) есть у животных и человека. Но только у человека, в результате постоянного общения друг с другом, развивается вторая сигнальная система (наиболее выжны для этого первые 6 лет жизни). Она делает слова символом явлений материального мира. Из них создаются абстрактные понятия. Одно и то же явление на разных языках обозначается не одинаково. Способность оперировать словами служит основой человеческого мышления, позволяет обмениваться мыслями и знаниями. Язык закрепляет в словах результаты человеческого мышления, создает науку и обеспечивает прогресс.

Лишь отдельные элементы более сложной (второй) сигнальной системы проявляются у млекопитающих и птиц, использующих звуковые сигналы. Однако, для животных слово – это лишь звуковой раздражитель. Для человека слово – это понятие, которое может вызвать те же реакции, что и природные раздражители.

Учитывая соотношения первой и второй сигнальной систем, И.П. Павлов выделил три человеческих типа ВНД. Люди с преобладанием первой сигнальной системы – художественный тип. Для этих людей характерно образное мышление, яркие зрительные и слуховые восприятий окружающего мира (художники и музыканты). Если преобладает вторая сигнальная система, то люди относятся к мыслительному типу. У них преобладает логическое мышление, способность к абстрактному пониманию (ученые, философы). Для большинства людей характерна одинаковая сила развития двух сигнальных систем (смешанный тип).

Одним из основных свойств ЦНС является память. Она выражается в способности сохранять информацию о событиях внешнего мира и реакциях организма. Память складывается из запоминания, хранения и воспроизведения информации. Стимулы, имеющие большое биологическое и социальное значение, фиксируются эффективнее. Различают наследуемую (генетическую) и ненаследуемую (индивидуальную), образную (воспроизводит образ объекта), эмоциональную (когда ситуация вызывает эмоции, характерные для события) и словеснологическую память. По времени сохранения информации различают: непосредственный отпечаток сенсорной информации (сенсорная память), кратковременную и долговременную память. Непосредственный отпечаток сенсорной информации удерживает след в памяти не более 500 мс, не зависит от воли, но зависит от функционального состояния организма. Непосредственный отпечаток является начальным этапом переработки поступивших сигналов. Кратковременная память обеспечивает удержание части поступившей информации, позволяет воспроизводить ее и тем самым некоторое время использовать. Долговременная память позволяет хранять информацию неограниченное время.

Существуют несколько механизмов кратковременной памяти. Согласно теории реверберации импульсов, поступающая информация хранится в замкнутой цепи нейронов, что обеспечивает длительную циркуляцию в них возбуждения. Электротоническая теория основана на развитии в синапсах потенциалов, которые облегчают прохождение новых импульсов и настолько повышают возбудимость нейрона, что он после прекращения раздражения определенное время сохраняет активность.

Длительное хранение информации, согласно анатомической теории осуществляется за счет образования новых волокон, изменения их размеров и развития синапсов на нейронах. Глиальная теория основывается на изменениях клеток, окружающих нейроны и синтезирующих вещества, облегчающие синаптическую передачу, а также повышающих возбудимость соответствующих нейронов. Биохимическая теория объясняет запоминание накоплением определенных ДНК и РНК в нейронах.

Источником поведенческой активности являются мотивации – побуждения к деятельности, связанные с удовлетворением определенных потребностей. Основной причиной возникновения биологических мотиваций является отклонение основных констант внутренней среды организма.

Эмоции возникают на этапе оценки вероятности удовлетворения или неудовлетворения возникших потребностей, а также при их удовлетворении. Они сигнализируют о полезности или вредности ощущаемого фактора, а также об успешности или неуспешности выполняемого действия. С помощью эмоций определяется личностное отношение к событиям. Приспособительная функция эмоций заключается в том, что она мгновенно мобилизует все системы организма для реакции на внезапное раздражение.

Треть своей жизни человек проводит в состоянии сна. Это жизненно необходимое физиологическое состояние вызывает временную потерю активных психических связей человека с окружающим миром.

Для объективной регистрации состояния сна используют запись электрической активности головного мозга с поверхности головы. Данный метод назван электроэнцефалографией, а получаемая кривая – электроэнцефалограммой (ЭЭГ). Восприятие внешних раздражений и активная деятельность мозга проявляются на ЭЭГ бета-ритмом (24-30 Гц). При бодрствовании в тишине и с закрытыми глазами регистрируется альфа-ритм (частота 8-13 Гц). В это время возможно засыпание, но пробуждение происходит легко. Переход к глубокому («медленному») сну сопровождается появлением тета-ритма (4-7 Гц), который может смениться еще более медленным дельта-ритмом (0,5-3,5 Гц). В это время, частота сердечных сокращений, артериальное давление и температура тела становятся наименьшими, а пробуждение затруднено. Примерно через 60-80 мин, на ЭЭГ возникают бета-волны (регистрируются около 30 мин). В начале и конце этого периода («быстрая» или «парадоксальная») сна человек чаще меняет позу, а на всём протяжении его регистрируются быстрые движения глаз. Только разбуженный во время парадоксального сна человек хорошо помнит увиденные сны. В первую половину ночи преобладает медленный сон, а в утренние часы – парадоксальный.

Наиболее признанной является корково-подкорковая теория сна. Она исходит из того, что бодрствование обусловлено активирующими влиями на кору мозга, «центров бодрствования», расположенных в РФ ствола мозга, в заднем гипоталамусе и базальных ядрах РФ. Благодаря ним у нейронов коры настолько повышается возбудимость, что они становятся способны перерабатывать информацию и реагировать на поступающие сигналы. Нарушение деятельности любого «центра бодрствования» несовместимо с сознанием и вызывает кому.

В «центрах бодрствования» есть особые нейроны, которые снижают его восходящие активирующие влияния при отсутствии сответствующих сигналов из коры. Это приводит к развитию глубокого (медленного) сна. При нем, кора резко снижает реакции на сигналы с органов слуха и зрения, временно теряет связь с мотонейронами скелетной мускулатуры, но в значительно большем объеме (чем при бодрствовании) получает информацию от внутренних органов. Поэтому медленный сон может быть необходим как для отдыха мозговой ткани, так и для оптимизации управления внутренними органами.

Парадоксальный сон запускается из центров, которые расположены только в РФ и базальных ядрах. В это время клетки мозга активны, но информация от органов чувств к ним не поступает и не передается на мышечную систему. Видимо, при этом интенсивно перерабатывается хранящаяся в памяти информация, что может вызывать сновидения.

Физиологическая адаптация

Научно-техническая революция привела к значительному увеличению числа неблагоприятных для человека факторов и создала условия, часто противоречащие приобретенным им в ходе эволюции физиологическим особенностям.

Следовательно, актуальной проблемой современной физиологии является разработка мероприятий, способствующих оптимальному приспособлению людей к окружающим условиям. Для этого необходимо глубокое понимание сущности и механизмов адаптации.

Физиологическая адаптация – это совокупность физиологических реакций, направленных на формирование и сохранение оптимального баланса между животным и окружающей его внешней средой.

Каждый действующий фактор характеризуется качеством (природой раздражителя) и количеством (биологической активностью влияния на организм).

При слабых (пороговых) раздражениях в ЦНС развивается возбуждение, быстро сменяющееся торможением, что обеспечивает снижение чувствительности к таким воздействиям и для получения новых реакций приходится постепенно повышать силу воздействия (реакции тренировки). В этой стадии медленно растет резистентность (сопротивляемость неблагоприятному влиянию), а также несколько увеличивается активность иммунной и эндокринной систем человека.

При средней силе раздражений развивается выраженная, но не истощающая организм стимуляция защитных систем организма (стадия активации). Если средние по силе раздражения становятся регулярными, то неспецифическая резистентность быстро возрастает и создает условия для дальнейшего роста устойчивости к различным по силе и природе воздействиям.

Таким образом, слабые и средние по силе воздействия обычно не причиняют вреда собственному организму, но повышают его резистентность.

Однако, для людей с разными типами ВНД одинаковое по силе раздражение могут быть как слабыми, так и чрезмерными (например, новая обстановка, вызывает у одного человека ощущение тревоги, а у другого – паники).

Даже слабое, отклонение от «привычного» режима у слабого типа, вызывает замедленные, быстро истощающиеся и часто неадекватные ситуации приспособительные реакции.

Сильный неуравновешенный безудержный тип реагирует быстро, часто чрезмерно.

Сильный уравновешенный подвижный тип дает быстрые и адекватные реакции даже при часто меняющихся неблагоприятных условиях.

Сильный уравновешенный инертный тип реагирует медленно, но адекватно.

Сформировавшуюся в процессе эволюции неспецифическую защитную реакцию организма, подготавливающую его к активной борьбе с неблагоприятными воздействиями различной природы, Канадский ученый Ганс Селье назвал термином стресс (напряжение), а вызывающие его факторы – стрессорами. Ни один живой организм не может постоянно находиться в состоянии «стресса», он приспосабливается или погибает. Если стрессор действует долго, а человек не заболевает и не погибает, можно утверждать, что данный раздражитель уже перестал вызывать стресс, и наступила адаптация.

Неблагоприятные, а также полезные для человека раздражения чрезмерной силы, вызывают специфические (определяются природой неблагоприятного фактора) и неспецифические (определяются силой неблагоприятного фактора) адаптивные реакции.

Совокупность врожденных, преимущественно гуморальных, неспецифических механизмов адаптации Селье назвал общим адаптационным синдромом (ОАС), развитие которого можно разделить на три стадии:

  • Тревоги или мобилизации (продолжается до двух суток) -характеризуется активацией защитных механизмов организма. Это проявляется усилением распада органических веществ в тканях, увеличением концентрации в крови гормонов мозгового слоя (катехоламинов) и коры (особенно глюкокортикоидов) надпочечников, мобилизацией энергетических ресурсов, повышением устойчивости организма к большинству неблагоприятных факторов и снижением массы тела. Если действие стрессора продолжается, а человек не погибает, то начинается следующая стадия.
  • Резистентности или адаптации (может длиться несколько недель) – характеризуется ростом неспецифической устойчивости организма к раздражителям. При этом начинают преобладать анаболические процессы, что способствует восстановлению массы тела.
  • Если стрессор ослабляет механизмы адаптации, то наступает стадия истощения или дистресс (страдание). Это сопровождается развитием болезни, а в случае продолжения действия стрессора приводит к необратимым изменениям и человек погибает.

Все адаптационные процессы начинаются на уровне рецепторного отдела наиболее чувствительного к стрессору анализатора (рис. 15).

Информация об этом поступает в ЦНС, которая активирует гипоталамо-гипофизарно-надпочечниковую и симпатоадреналовую системы.

Гипоталамо-гипофизарно-надпочечниковая система, является важнейшим гуморальным звеном физиологической адаптации, которое стремится перестроить организм так, что сдвиг параметров гомеостаза при действии стрессора устраняется или даже не допускается. Выделение катехоламинов (преимущественно адреналина) мозговым слоем надпочечников регулируется симпатоадреналовой системой, основными звеньями которой являются симпатическая вегетативная нервная система и мозговой слой надпочечников. Следовательно, любой стрессор вызывает реакцию надпочечников.

Рис. 15. Нервные и гуморальные механизмы неспецифической адаптации (по Г. Селье).

Условные обозначения: АКТГ – адренокортикотропный гормон, Гт – гипоталамус, Гф – гипофиз, Кс – кровеносный сосуд.

Российский ученый Леон Орбели установил, что симпатическая нервная система мобилизует энергетические ресурсы организма, повышает работоспособность мышц, стимулирует сердечно-сосудистую систему, активизирует иммунологические процессы (адаптационно-трофическая роль).

Таким образом, ЦНС обеспечивает восприятие раздражений и их оценку, а затем стремится формировать адекватный ответ. После прекращения действия раздражителя, вызванные им изменения, некоторое время сохраняются. Поэтому новое подобное воздействие вызывает более сильный ответ мозга на него.

Адаптация к повторяющимся воздействиям одной природы осуществляется в два этапа. Первым этап развивается быстро (срочная адаптация), а второй – постепенно (долговременная адаптация).

Срочная адаптация неспецифична. В её основе лежит ОАС. На данном этапе организм функционирует на пределе своих возможностей, нерационально расходует энергию и часто не обеспечивает оптимальный приспособительный эффект. В некоторых случаях механизмы срочной адаптации чрезмерны и сами вызывают нарушение гомеостаза.

Долговременная адаптация возникает при систематическом повторении умеренных по силе и продолжительности неблагоприятных воздействий определенной природы. Она повышает специфическую и неспецифическую резистентность животного.

При завершении формирования механизмов долговременной адаптации даже очень сильный специфический раздражитель не нарушает гомеостаз, а стрессовая реакция на него отсутствует. При этом исчезают ненужные проявления ОАС, а наиболее рациональные реакции используются с максимальной эффективностью. Благодаря долговременной адаптации, человек может существовать даже в таких условиях, которые до этого были несовместимы с жизнью. Например, развитие устойчивости к холоду, жаре, ядам.

Долговременная адаптация приводит к накоплению определенных структурных изменений в регулярно участвующих в адаптации органах и тканях. Это обеспечивает рост мощности систем, ответственных за специфическую резистентность. Следовательно, при долговременной адаптации возможно формирование структурного следа. В нервных центрах он проявляется гипертрофией реагирующих на данный раздражитель нейронов, повышением в них ферментативной активности, а также снижением чувствительности нейронов к раздражителю. На эндокринном уровне наблюдается гипертрофия коркового и мозгового вещества надпочечников. В исполнительных органах – происходит увеличение их функциональных возможностей. Например, при адаптации к физическим нагрузкам происходит гипертрофия определенных групп скелетных мышц. В клетках – стимулируется синтез АТФ и снижается повреждающее действие ее дефицита.

Для долговременной адаптации характерно резкое снижение затрат на приспособление к определенным неблагоприятным воздействиям.

Следует учитывать, что прекращение действия факторов, вызвавших формирование структурного следа, приводит к постепенному восстановлению прежних размеров, участвовавших в этом процессе структур, но память об имевшихся изменениях остается. Поэтому при возобновлении тех же воздействий наблюдается более быстрая адаптация данного организма.

Таким образом, повторные и длительные, но совместимые с жизнью воздействия, вызывают адаптацию, которая расширяет границы существования организма. Знание механизмов общей и специфической адаптации позволяет с минимальными потерями обеспечивать наиболее высокие показатели деятельности в меняющихся условиях.